summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c')
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c254
1 files changed, 90 insertions, 164 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c b/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c
index 314be2192b7d..27c9dfffb9a6 100644
--- a/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/secboot/base.c
@@ -19,184 +19,108 @@
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
+
+/*
+ * Secure boot is the process by which NVIDIA-signed firmware is loaded into
+ * some of the falcons of a GPU. For production devices this is the only way
+ * for the firmware to access useful (but sensitive) registers.
+ *
+ * A Falcon microprocessor supporting advanced security modes can run in one of
+ * three modes:
+ *
+ * - Non-secure (NS). In this mode, functionality is similar to Falcon
+ * architectures before security modes were introduced (pre-Maxwell), but
+ * capability is restricted. In particular, certain registers may be
+ * inaccessible for reads and/or writes, and physical memory access may be
+ * disabled (on certain Falcon instances). This is the only possible mode that
+ * can be used if you don't have microcode cryptographically signed by NVIDIA.
+ *
+ * - Heavy Secure (HS). In this mode, the microprocessor is a black box - it's
+ * not possible to read or write any Falcon internal state or Falcon registers
+ * from outside the Falcon (for example, from the host system). The only way
+ * to enable this mode is by loading microcode that has been signed by NVIDIA.
+ * (The loading process involves tagging the IMEM block as secure, writing the
+ * signature into a Falcon register, and starting execution. The hardware will
+ * validate the signature, and if valid, grant HS privileges.)
+ *
+ * - Light Secure (LS). In this mode, the microprocessor has more privileges
+ * than NS but fewer than HS. Some of the microprocessor state is visible to
+ * host software to ease debugging. The only way to enable this mode is by HS
+ * microcode enabling LS mode. Some privileges available to HS mode are not
+ * available here. LS mode is introduced in GM20x.
+ *
+ * Secure boot consists in temporarily switching a HS-capable falcon (typically
+ * PMU) into HS mode in order to validate the LS firmwares of managed falcons,
+ * load them, and switch managed falcons into LS mode. Once secure boot
+ * completes, no falcon remains in HS mode.
+ *
+ * Secure boot requires a write-protected memory region (WPR) which can only be
+ * written by the secure falcon. On dGPU, the driver sets up the WPR region in
+ * video memory. On Tegra, it is set up by the bootloader and its location and
+ * size written into memory controller registers.
+ *
+ * The secure boot process takes place as follows:
+ *
+ * 1) A LS blob is constructed that contains all the LS firmwares we want to
+ * load, along with their signatures and bootloaders.
+ *
+ * 2) A HS blob (also called ACR) is created that contains the signed HS
+ * firmware in charge of loading the LS firmwares into their respective
+ * falcons.
+ *
+ * 3) The HS blob is loaded (via its own bootloader) and executed on the
+ * HS-capable falcon. It authenticates itself, switches the secure falcon to
+ * HS mode and setup the WPR region around the LS blob (dGPU) or copies the
+ * LS blob into the WPR region (Tegra).
+ *
+ * 4) The LS blob is now secure from all external tampering. The HS falcon
+ * checks the signatures of the LS firmwares and, if valid, switches the
+ * managed falcons to LS mode and makes them ready to run the LS firmware.
+ *
+ * 5) The managed falcons remain in LS mode and can be started.
+ *
+ */
+
#include "priv.h"
+#include "acr.h"
#include <subdev/mc.h>
#include <subdev/timer.h>
+#include <subdev/pmu.h>
-static const char *
-managed_falcons_names[] = {
+const char *
+nvkm_secboot_falcon_name[] = {
[NVKM_SECBOOT_FALCON_PMU] = "PMU",
[NVKM_SECBOOT_FALCON_RESERVED] = "<reserved>",
[NVKM_SECBOOT_FALCON_FECS] = "FECS",
[NVKM_SECBOOT_FALCON_GPCCS] = "GPCCS",
[NVKM_SECBOOT_FALCON_END] = "<invalid>",
};
-
-/*
- * Helper falcon functions
- */
-
-static int
-falcon_clear_halt_interrupt(struct nvkm_device *device, u32 base)
-{
- int ret;
-
- /* clear halt interrupt */
- nvkm_mask(device, base + 0x004, 0x10, 0x10);
- /* wait until halt interrupt is cleared */
- ret = nvkm_wait_msec(device, 10, base + 0x008, 0x10, 0x0);
- if (ret < 0)
- return ret;
-
- return 0;
-}
-
-static int
-falcon_wait_idle(struct nvkm_device *device, u32 base)
-{
- int ret;
-
- ret = nvkm_wait_msec(device, 10, base + 0x04c, 0xffff, 0x0);
- if (ret < 0)
- return ret;
-
- return 0;
-}
-
-static int
-nvkm_secboot_falcon_enable(struct nvkm_secboot *sb)
-{
- struct nvkm_device *device = sb->subdev.device;
- int ret;
-
- /* enable engine */
- nvkm_mc_enable(device, sb->devidx);
- ret = nvkm_wait_msec(device, 10, sb->base + 0x10c, 0x6, 0x0);
- if (ret < 0) {
- nvkm_error(&sb->subdev, "Falcon mem scrubbing timeout\n");
- nvkm_mc_disable(device, sb->devidx);
- return ret;
- }
-
- ret = falcon_wait_idle(device, sb->base);
- if (ret)
- return ret;
-
- /* enable IRQs */
- nvkm_wr32(device, sb->base + 0x010, 0xff);
- nvkm_mc_intr_mask(device, sb->devidx, true);
-
- return 0;
-}
-
-static int
-nvkm_secboot_falcon_disable(struct nvkm_secboot *sb)
-{
- struct nvkm_device *device = sb->subdev.device;
-
- /* disable IRQs and wait for any previous code to complete */
- nvkm_mc_intr_mask(device, sb->devidx, false);
- nvkm_wr32(device, sb->base + 0x014, 0xff);
-
- falcon_wait_idle(device, sb->base);
-
- /* disable engine */
- nvkm_mc_disable(device, sb->devidx);
-
- return 0;
-}
-
-int
-nvkm_secboot_falcon_reset(struct nvkm_secboot *sb)
-{
- int ret;
-
- ret = nvkm_secboot_falcon_disable(sb);
- if (ret)
- return ret;
-
- ret = nvkm_secboot_falcon_enable(sb);
- if (ret)
- return ret;
-
- return 0;
-}
-
-/**
- * nvkm_secboot_falcon_run - run the falcon that will perform secure boot
- *
- * This function is to be called after all chip-specific preparations have
- * been completed. It will start the falcon to perform secure boot, wait for
- * it to halt, and report if an error occurred.
- */
-int
-nvkm_secboot_falcon_run(struct nvkm_secboot *sb)
-{
- struct nvkm_device *device = sb->subdev.device;
- int ret;
-
- /* Start falcon */
- nvkm_wr32(device, sb->base + 0x100, 0x2);
-
- /* Wait for falcon halt */
- ret = nvkm_wait_msec(device, 100, sb->base + 0x100, 0x10, 0x10);
- if (ret < 0)
- return ret;
-
- /* If mailbox register contains an error code, then ACR has failed */
- ret = nvkm_rd32(device, sb->base + 0x040);
- if (ret) {
- nvkm_error(&sb->subdev, "ACR boot failed, ret 0x%08x", ret);
- falcon_clear_halt_interrupt(device, sb->base);
- return -EINVAL;
- }
-
- return 0;
-}
-
-
/**
* nvkm_secboot_reset() - reset specified falcon
*/
int
-nvkm_secboot_reset(struct nvkm_secboot *sb, u32 falcon)
+nvkm_secboot_reset(struct nvkm_secboot *sb, enum nvkm_secboot_falcon falcon)
{
/* Unmanaged falcon? */
- if (!(BIT(falcon) & sb->func->managed_falcons)) {
+ if (!(BIT(falcon) & sb->acr->managed_falcons)) {
nvkm_error(&sb->subdev, "cannot reset unmanaged falcon!\n");
return -EINVAL;
}
- return sb->func->reset(sb, falcon);
-}
-
-/**
- * nvkm_secboot_start() - start specified falcon
- */
-int
-nvkm_secboot_start(struct nvkm_secboot *sb, u32 falcon)
-{
- /* Unmanaged falcon? */
- if (!(BIT(falcon) & sb->func->managed_falcons)) {
- nvkm_error(&sb->subdev, "cannot start unmanaged falcon!\n");
- return -EINVAL;
- }
-
- return sb->func->start(sb, falcon);
+ return sb->acr->func->reset(sb->acr, sb, falcon);
}
/**
* nvkm_secboot_is_managed() - check whether a given falcon is securely-managed
*/
bool
-nvkm_secboot_is_managed(struct nvkm_secboot *secboot,
- enum nvkm_secboot_falcon fid)
+nvkm_secboot_is_managed(struct nvkm_secboot *sb, enum nvkm_secboot_falcon fid)
{
- if (!secboot)
+ if (!sb)
return false;
- return secboot->func->managed_falcons & BIT(fid);
+ return sb->acr->managed_falcons & BIT(fid);
}
static int
@@ -205,9 +129,19 @@ nvkm_secboot_oneinit(struct nvkm_subdev *subdev)
struct nvkm_secboot *sb = nvkm_secboot(subdev);
int ret = 0;
+ switch (sb->acr->boot_falcon) {
+ case NVKM_SECBOOT_FALCON_PMU:
+ sb->boot_falcon = subdev->device->pmu->falcon;
+ break;
+ default:
+ nvkm_error(subdev, "Unmanaged boot falcon %s!\n",
+ nvkm_secboot_falcon_name[sb->acr->boot_falcon]);
+ return -EINVAL;
+ }
+
/* Call chip-specific init function */
- if (sb->func->init)
- ret = sb->func->init(sb);
+ if (sb->func->oneinit)
+ ret = sb->func->oneinit(sb);
if (ret) {
nvkm_error(subdev, "Secure Boot initialization failed: %d\n",
ret);
@@ -249,7 +183,7 @@ nvkm_secboot = {
};
int
-nvkm_secboot_ctor(const struct nvkm_secboot_func *func,
+nvkm_secboot_ctor(const struct nvkm_secboot_func *func, struct nvkm_acr *acr,
struct nvkm_device *device, int index,
struct nvkm_secboot *sb)
{
@@ -257,22 +191,14 @@ nvkm_secboot_ctor(const struct nvkm_secboot_func *func,
nvkm_subdev_ctor(&nvkm_secboot, device, index, &sb->subdev);
sb->func = func;
-
- /* setup the performing falcon's base address and masks */
- switch (func->boot_falcon) {
- case NVKM_SECBOOT_FALCON_PMU:
- sb->devidx = NVKM_SUBDEV_PMU;
- sb->base = 0x10a000;
- break;
- default:
- nvkm_error(&sb->subdev, "invalid secure boot falcon\n");
- return -EINVAL;
- };
+ sb->acr = acr;
+ acr->subdev = &sb->subdev;
nvkm_debug(&sb->subdev, "securely managed falcons:\n");
- for_each_set_bit(fid, &sb->func->managed_falcons,
+ for_each_set_bit(fid, &sb->acr->managed_falcons,
NVKM_SECBOOT_FALCON_END)
- nvkm_debug(&sb->subdev, "- %s\n", managed_falcons_names[fid]);
+ nvkm_debug(&sb->subdev, "- %s\n",
+ nvkm_secboot_falcon_name[fid]);
return 0;
}