/* * Copyright (C) 2005-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include static DEFINE_PER_CPU(struct cpu, cpu_devices); #ifdef CONFIG_PERFORMANCE_COUNTERS /* * XXX: If/when a SMP-capable implementation of AVR32 will ever be * made, we must make sure that the code executes on the correct CPU. */ static ssize_t show_pc0event(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long pccr; pccr = sysreg_read(PCCR); return sprintf(buf, "0x%lx\n", (pccr >> 12) & 0x3f); } static ssize_t store_pc0event(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; if (val > 0x3f) return -EINVAL; val = (val << 12) | (sysreg_read(PCCR) & 0xfffc0fff); sysreg_write(PCCR, val); return count; } static ssize_t show_pc0count(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long pcnt0; pcnt0 = sysreg_read(PCNT0); return sprintf(buf, "%lu\n", pcnt0); } static ssize_t store_pc0count(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; sysreg_write(PCNT0, val); return count; } static ssize_t show_pc1event(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long pccr; pccr = sysreg_read(PCCR); return sprintf(buf, "0x%lx\n", (pccr >> 18) & 0x3f); } static ssize_t store_pc1event(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; if (val > 0x3f) return -EINVAL; val = (val << 18) | (sysreg_read(PCCR) & 0xff03ffff); sysreg_write(PCCR, val); return count; } static ssize_t show_pc1count(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long pcnt1; pcnt1 = sysreg_read(PCNT1); return sprintf(buf, "%lu\n", pcnt1); } static ssize_t store_pc1count(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; sysreg_write(PCNT1, val); return count; } static ssize_t show_pccycles(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long pccnt; pccnt = sysreg_read(PCCNT); return sprintf(buf, "%lu\n", pccnt); } static ssize_t store_pccycles(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; sysreg_write(PCCNT, val); return count; } static ssize_t show_pcenable(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long pccr; pccr = sysreg_read(PCCR); return sprintf(buf, "%c\n", (pccr & 1)?'1':'0'); } static ssize_t store_pcenable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long pccr, val; int ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; if (val) val = 1; pccr = sysreg_read(PCCR); pccr = (pccr & ~1UL) | val; sysreg_write(PCCR, pccr); return count; } static DEVICE_ATTR(pc0event, 0600, show_pc0event, store_pc0event); static DEVICE_ATTR(pc0count, 0600, show_pc0count, store_pc0count); static DEVICE_ATTR(pc1event, 0600, show_pc1event, store_pc1event); static DEVICE_ATTR(pc1count, 0600, show_pc1count, store_pc1count); static DEVICE_ATTR(pccycles, 0600, show_pccycles, store_pccycles); static DEVICE_ATTR(pcenable, 0600, show_pcenable, store_pcenable); #endif /* CONFIG_PERFORMANCE_COUNTERS */ static int __init topology_init(void) { int cpu; for_each_possible_cpu(cpu) { struct cpu *c = &per_cpu(cpu_devices, cpu); register_cpu(c, cpu); #ifdef CONFIG_PERFORMANCE_COUNTERS device_create_file(&c->dev, &dev_attr_pc0event); device_create_file(&c->dev, &dev_attr_pc0count); device_create_file(&c->dev, &dev_attr_pc1event); device_create_file(&c->dev, &dev_attr_pc1count); device_create_file(&c->dev, &dev_attr_pccycles); device_create_file(&c->dev, &dev_attr_pcenable); #endif } return 0; } subsys_initcall(topology_init); struct chip_id_map { u16 mid; u16 pn; const char *name; }; static const struct chip_id_map chip_names[] = { { .mid = 0x1f, .pn = 0x1e82, .name = "AT32AP700x" }, }; #define NR_CHIP_NAMES ARRAY_SIZE(chip_names) static const char *cpu_names[] = { "Morgan", "AP7", }; #define NR_CPU_NAMES ARRAY_SIZE(cpu_names) static const char *arch_names[] = { "AVR32A", "AVR32B", }; #define NR_ARCH_NAMES ARRAY_SIZE(arch_names) static const char *mmu_types[] = { "No MMU", "ITLB and DTLB", "Shared TLB", "MPU" }; static const char *cpu_feature_flags[] = { "rmw", "dsp", "simd", "ocd", "perfctr", "java", "fpu", }; static const char *get_chip_name(struct avr32_cpuinfo *cpu) { unsigned int i; unsigned int mid = avr32_get_manufacturer_id(cpu); unsigned int pn = avr32_get_product_number(cpu); for (i = 0; i < NR_CHIP_NAMES; i++) { if (chip_names[i].mid == mid && chip_names[i].pn == pn) return chip_names[i].name; } return "(unknown)"; } void __init setup_processor(void) { unsigned long config0, config1; unsigned long features; unsigned cpu_id, cpu_rev, arch_id, arch_rev, mmu_type; unsigned device_id; unsigned tmp; unsigned i; config0 = sysreg_read(CONFIG0); config1 = sysreg_read(CONFIG1); cpu_id = SYSREG_BFEXT(PROCESSORID, config0); cpu_rev = SYSREG_BFEXT(PROCESSORREVISION, config0); arch_id = SYSREG_BFEXT(AT, config0); arch_rev = SYSREG_BFEXT(AR, config0); mmu_type = SYSREG_BFEXT(MMUT, config0); device_id = ocd_read(DID); boot_cpu_data.arch_type = arch_id; boot_cpu_data.cpu_type = cpu_id; boot_cpu_data.arch_revision = arch_rev; boot_cpu_data.cpu_revision = cpu_rev; boot_cpu_data.tlb_config = mmu_type; boot_cpu_data.device_id = device_id; tmp = SYSREG_BFEXT(ILSZ, config1); if (tmp) { boot_cpu_data.icache.ways = 1 << SYSREG_BFEXT(IASS, config1); boot_cpu_data.icache.sets = 1 << SYSREG_BFEXT(ISET, config1); boot_cpu_data.icache.linesz = 1 << (tmp + 1); } tmp = SYSREG_BFEXT(DLSZ, config1); if (tmp) { boot_cpu_data.dcache.ways = 1 << SYSREG_BFEXT(DASS, config1); boot_cpu_data.dcache.sets = 1 << SYSREG_BFEXT(DSET, config1); boot_cpu_data.dcache.linesz = 1 << (tmp + 1); } if ((cpu_id >= NR_CPU_NAMES) || (arch_id >= NR_ARCH_NAMES)) { printk ("Unknown CPU configuration (ID %02x, arch %02x), " "continuing anyway...\n", cpu_id, arch_id); return; } printk ("CPU: %s chip revision %c\n", get_chip_name(&boot_cpu_data), avr32_get_chip_revision(&boot_cpu_data) + 'A'); printk ("CPU: %s [%02x] core revision %d (%s arch revision %d)\n", cpu_names[cpu_id], cpu_id, cpu_rev, arch_names[arch_id], arch_rev); printk ("CPU: MMU configuration: %s\n", mmu_types[mmu_type]); printk ("CPU: features:"); features = 0; if (config0 & SYSREG_BIT(CONFIG0_R)) features |= AVR32_FEATURE_RMW; if (config0 & SYSREG_BIT(CONFIG0_D)) features |= AVR32_FEATURE_DSP; if (config0 & SYSREG_BIT(CONFIG0_S)) features |= AVR32_FEATURE_SIMD; if (config0 & SYSREG_BIT(CONFIG0_O)) features |= AVR32_FEATURE_OCD; if (config0 & SYSREG_BIT(CONFIG0_P)) features |= AVR32_FEATURE_PCTR; if (config0 & SYSREG_BIT(CONFIG0_J)) features |= AVR32_FEATURE_JAVA; if (config0 & SYSREG_BIT(CONFIG0_F)) features |= AVR32_FEATURE_FPU; for (i = 0; i < ARRAY_SIZE(cpu_feature_flags); i++) if (features & (1 << i)) printk(" %s", cpu_feature_flags[i]); printk("\n"); boot_cpu_data.features = features; } #ifdef CONFIG_PROC_FS static int c_show(struct seq_file *m, void *v) { unsigned int icache_size, dcache_size; unsigned int cpu = smp_processor_id(); unsigned int freq; unsigned int i; icache_size = boot_cpu_data.icache.ways * boot_cpu_data.icache.sets * boot_cpu_data.icache.linesz; dcache_size = boot_cpu_data.dcache.ways * boot_cpu_data.dcache.sets * boot_cpu_data.dcache.linesz; seq_printf(m, "processor\t: %d\n", cpu); seq_printf(m, "chip type\t: %s revision %c\n", get_chip_name(&boot_cpu_data), avr32_get_chip_revision(&boot_cpu_data) + 'A'); if (boot_cpu_data.arch_type < NR_ARCH_NAMES) seq_printf(m, "cpu arch\t: %s revision %d\n", arch_names[boot_cpu_data.arch_type], boot_cpu_data.arch_revision); if (boot_cpu_data.cpu_type < NR_CPU_NAMES) seq_printf(m, "cpu core\t: %s revision %d\n", cpu_names[boot_cpu_data.cpu_type], boot_cpu_data.cpu_revision); freq = (clk_get_rate(boot_cpu_data.clk) + 500) / 1000; seq_printf(m, "cpu MHz\t\t: %u.%03u\n", freq / 1000, freq % 1000); seq_printf(m, "i-cache\t\t: %dK (%u ways x %u sets x %u)\n", icache_size >> 10, boot_cpu_data.icache.ways, boot_cpu_data.icache.sets, boot_cpu_data.icache.linesz); seq_printf(m, "d-cache\t\t: %dK (%u ways x %u sets x %u)\n", dcache_size >> 10, boot_cpu_data.dcache.ways, boot_cpu_data.dcache.sets, boot_cpu_data.dcache.linesz); seq_printf(m, "features\t:"); for (i = 0; i < ARRAY_SIZE(cpu_feature_flags); i++) if (boot_cpu_data.features & (1 << i)) seq_printf(m, " %s", cpu_feature_flags[i]); seq_printf(m, "\nbogomips\t: %lu.%02lu\n", boot_cpu_data.loops_per_jiffy / (500000/HZ), (boot_cpu_data.loops_per_jiffy / (5000/HZ)) % 100); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < 1 ? (void *)1 : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = c_show }; #endif /* CONFIG_PROC_FS */