/* * linux/drivers/net/irda/pxaficp_ir.c * * Based on sa1100_ir.c by Russell King * * Changes copyright (C) 2003-2005 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Infra-red driver (SIR/FIR) for the PXA2xx embedded microprocessor * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef __REG #define __REG(x) ((x) & 0xffff) #include #define ICCR0 0x0000 /* ICP Control Register 0 */ #define ICCR1 0x0004 /* ICP Control Register 1 */ #define ICCR2 0x0008 /* ICP Control Register 2 */ #define ICDR 0x000c /* ICP Data Register */ #define ICSR0 0x0014 /* ICP Status Register 0 */ #define ICSR1 0x0018 /* ICP Status Register 1 */ #define ICCR0_AME (1 << 7) /* Address match enable */ #define ICCR0_TIE (1 << 6) /* Transmit FIFO interrupt enable */ #define ICCR0_RIE (1 << 5) /* Receive FIFO interrupt enable */ #define ICCR0_RXE (1 << 4) /* Receive enable */ #define ICCR0_TXE (1 << 3) /* Transmit enable */ #define ICCR0_TUS (1 << 2) /* Transmit FIFO underrun select */ #define ICCR0_LBM (1 << 1) /* Loopback mode */ #define ICCR0_ITR (1 << 0) /* IrDA transmission */ #define ICCR2_RXP (1 << 3) /* Receive Pin Polarity select */ #define ICCR2_TXP (1 << 2) /* Transmit Pin Polarity select */ #define ICCR2_TRIG (3 << 0) /* Receive FIFO Trigger threshold */ #define ICCR2_TRIG_8 (0 << 0) /* >= 8 bytes */ #define ICCR2_TRIG_16 (1 << 0) /* >= 16 bytes */ #define ICCR2_TRIG_32 (2 << 0) /* >= 32 bytes */ #define ICSR0_EOC (1 << 6) /* DMA End of Descriptor Chain */ #define ICSR0_FRE (1 << 5) /* Framing error */ #define ICSR0_RFS (1 << 4) /* Receive FIFO service request */ #define ICSR0_TFS (1 << 3) /* Transnit FIFO service request */ #define ICSR0_RAB (1 << 2) /* Receiver abort */ #define ICSR0_TUR (1 << 1) /* Trunsmit FIFO underun */ #define ICSR0_EIF (1 << 0) /* End/Error in FIFO */ #define ICSR1_ROR (1 << 6) /* Receiver FIFO underrun */ #define ICSR1_CRE (1 << 5) /* CRC error */ #define ICSR1_EOF (1 << 4) /* End of frame */ #define ICSR1_TNF (1 << 3) /* Transmit FIFO not full */ #define ICSR1_RNE (1 << 2) /* Receive FIFO not empty */ #define ICSR1_TBY (1 << 1) /* Tramsmiter busy flag */ #define ICSR1_RSY (1 << 0) /* Recevier synchronized flag */ #define IrSR_RXPL_NEG_IS_ZERO (1<<4) #define IrSR_RXPL_POS_IS_ZERO 0x0 #define IrSR_TXPL_NEG_IS_ZERO (1<<3) #define IrSR_TXPL_POS_IS_ZERO 0x0 #define IrSR_XMODE_PULSE_1_6 (1<<2) #define IrSR_XMODE_PULSE_3_16 0x0 #define IrSR_RCVEIR_IR_MODE (1<<1) #define IrSR_RCVEIR_UART_MODE 0x0 #define IrSR_XMITIR_IR_MODE (1<<0) #define IrSR_XMITIR_UART_MODE 0x0 #define IrSR_IR_RECEIVE_ON (\ IrSR_RXPL_NEG_IS_ZERO | \ IrSR_TXPL_POS_IS_ZERO | \ IrSR_XMODE_PULSE_3_16 | \ IrSR_RCVEIR_IR_MODE | \ IrSR_XMITIR_UART_MODE) #define IrSR_IR_TRANSMIT_ON (\ IrSR_RXPL_NEG_IS_ZERO | \ IrSR_TXPL_POS_IS_ZERO | \ IrSR_XMODE_PULSE_3_16 | \ IrSR_RCVEIR_UART_MODE | \ IrSR_XMITIR_IR_MODE) /* macros for registers read/write */ #define ficp_writel(irda, val, off) \ do { \ dev_vdbg(irda->dev, \ "%s():%d ficp_writel(0x%x, %s)\n", \ __func__, __LINE__, (val), #off); \ writel_relaxed((val), (irda)->irda_base + (off)); \ } while (0) #define ficp_readl(irda, off) \ ({ \ unsigned int _v; \ _v = readl_relaxed((irda)->irda_base + (off)); \ dev_vdbg(irda->dev, \ "%s():%d ficp_readl(%s): 0x%x\n", \ __func__, __LINE__, #off, _v); \ _v; \ }) #define stuart_writel(irda, val, off) \ do { \ dev_vdbg(irda->dev, \ "%s():%d stuart_writel(0x%x, %s)\n", \ __func__, __LINE__, (val), #off); \ writel_relaxed((val), (irda)->stuart_base + (off)); \ } while (0) #define stuart_readl(irda, off) \ ({ \ unsigned int _v; \ _v = readl_relaxed((irda)->stuart_base + (off)); \ dev_vdbg(irda->dev, \ "%s():%d stuart_readl(%s): 0x%x\n", \ __func__, __LINE__, #off, _v); \ _v; \ }) struct pxa_irda { int speed; int newspeed; unsigned long long last_clk; void __iomem *stuart_base; void __iomem *irda_base; unsigned char *dma_rx_buff; unsigned char *dma_tx_buff; dma_addr_t dma_rx_buff_phy; dma_addr_t dma_tx_buff_phy; unsigned int dma_tx_buff_len; struct dma_chan *txdma; struct dma_chan *rxdma; dma_cookie_t rx_cookie; dma_cookie_t tx_cookie; int drcmr_rx; int drcmr_tx; int uart_irq; int icp_irq; struct irlap_cb *irlap; struct qos_info qos; iobuff_t tx_buff; iobuff_t rx_buff; struct device *dev; struct pxaficp_platform_data *pdata; struct clk *fir_clk; struct clk *sir_clk; struct clk *cur_clk; }; static int pxa_irda_set_speed(struct pxa_irda *si, int speed); static inline void pxa_irda_disable_clk(struct pxa_irda *si) { if (si->cur_clk) clk_disable_unprepare(si->cur_clk); si->cur_clk = NULL; } static inline void pxa_irda_enable_firclk(struct pxa_irda *si) { si->cur_clk = si->fir_clk; clk_prepare_enable(si->fir_clk); } static inline void pxa_irda_enable_sirclk(struct pxa_irda *si) { si->cur_clk = si->sir_clk; clk_prepare_enable(si->sir_clk); } #define IS_FIR(si) ((si)->speed >= 4000000) #define IRDA_FRAME_SIZE_LIMIT 2047 static void pxa_irda_fir_dma_rx_irq(void *data); static void pxa_irda_fir_dma_tx_irq(void *data); inline static void pxa_irda_fir_dma_rx_start(struct pxa_irda *si) { struct dma_async_tx_descriptor *tx; tx = dmaengine_prep_slave_single(si->rxdma, si->dma_rx_buff_phy, IRDA_FRAME_SIZE_LIMIT, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT); if (!tx) { dev_err(si->dev, "prep_slave_sg() failed\n"); return; } tx->callback = pxa_irda_fir_dma_rx_irq; tx->callback_param = si; si->rx_cookie = dmaengine_submit(tx); dma_async_issue_pending(si->rxdma); } inline static void pxa_irda_fir_dma_tx_start(struct pxa_irda *si) { struct dma_async_tx_descriptor *tx; tx = dmaengine_prep_slave_single(si->txdma, si->dma_tx_buff_phy, si->dma_tx_buff_len, DMA_TO_DEVICE, DMA_PREP_INTERRUPT); if (!tx) { dev_err(si->dev, "prep_slave_sg() failed\n"); return; } tx->callback = pxa_irda_fir_dma_tx_irq; tx->callback_param = si; si->tx_cookie = dmaengine_submit(tx); dma_async_issue_pending(si->rxdma); } /* * Set the IrDA communications mode. */ static void pxa_irda_set_mode(struct pxa_irda *si, int mode) { if (si->pdata->transceiver_mode) si->pdata->transceiver_mode(si->dev, mode); else { if (gpio_is_valid(si->pdata->gpio_pwdown)) gpio_set_value(si->pdata->gpio_pwdown, !(mode & IR_OFF) ^ !si->pdata->gpio_pwdown_inverted); pxa2xx_transceiver_mode(si->dev, mode); } } /* * Set the IrDA communications speed. */ static int pxa_irda_set_speed(struct pxa_irda *si, int speed) { unsigned long flags; unsigned int divisor; switch (speed) { case 9600: case 19200: case 38400: case 57600: case 115200: /* refer to PXA250/210 Developer's Manual 10-7 */ /* BaudRate = 14.7456 MHz / (16*Divisor) */ divisor = 14745600 / (16 * speed); local_irq_save(flags); if (IS_FIR(si)) { /* stop RX DMA */ dmaengine_terminate_all(si->rxdma); /* disable FICP */ ficp_writel(si, 0, ICCR0); pxa_irda_disable_clk(si); /* set board transceiver to SIR mode */ pxa_irda_set_mode(si, IR_SIRMODE); /* enable the STUART clock */ pxa_irda_enable_sirclk(si); } /* disable STUART first */ stuart_writel(si, 0, STIER); /* access DLL & DLH */ stuart_writel(si, stuart_readl(si, STLCR) | LCR_DLAB, STLCR); stuart_writel(si, divisor & 0xff, STDLL); stuart_writel(si, divisor >> 8, STDLH); stuart_writel(si, stuart_readl(si, STLCR) & ~LCR_DLAB, STLCR); si->speed = speed; stuart_writel(si, IrSR_IR_RECEIVE_ON | IrSR_XMODE_PULSE_1_6, STISR); stuart_writel(si, IER_UUE | IER_RLSE | IER_RAVIE | IER_RTIOE, STIER); local_irq_restore(flags); break; case 4000000: local_irq_save(flags); /* disable STUART */ stuart_writel(si, 0, STIER); stuart_writel(si, 0, STISR); pxa_irda_disable_clk(si); /* disable FICP first */ ficp_writel(si, 0, ICCR0); /* set board transceiver to FIR mode */ pxa_irda_set_mode(si, IR_FIRMODE); /* enable the FICP clock */ pxa_irda_enable_firclk(si); si->speed = speed; pxa_irda_fir_dma_rx_start(si); ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0); local_irq_restore(flags); break; default: return -EINVAL; } return 0; } /* SIR interrupt service routine. */ static irqreturn_t pxa_irda_sir_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct pxa_irda *si = netdev_priv(dev); int iir, lsr, data; iir = stuart_readl(si, STIIR); switch (iir & 0x0F) { case 0x06: /* Receiver Line Status */ lsr = stuart_readl(si, STLSR); while (lsr & LSR_FIFOE) { data = stuart_readl(si, STRBR); if (lsr & (LSR_OE | LSR_PE | LSR_FE | LSR_BI)) { printk(KERN_DEBUG "pxa_ir: sir receiving error\n"); dev->stats.rx_errors++; if (lsr & LSR_FE) dev->stats.rx_frame_errors++; if (lsr & LSR_OE) dev->stats.rx_fifo_errors++; } else { dev->stats.rx_bytes++; async_unwrap_char(dev, &dev->stats, &si->rx_buff, data); } lsr = stuart_readl(si, STLSR); } si->last_clk = sched_clock(); break; case 0x04: /* Received Data Available */ /* forth through */ case 0x0C: /* Character Timeout Indication */ do { dev->stats.rx_bytes++; async_unwrap_char(dev, &dev->stats, &si->rx_buff, stuart_readl(si, STRBR)); } while (stuart_readl(si, STLSR) & LSR_DR); si->last_clk = sched_clock(); break; case 0x02: /* Transmit FIFO Data Request */ while ((si->tx_buff.len) && (stuart_readl(si, STLSR) & LSR_TDRQ)) { stuart_writel(si, *si->tx_buff.data++, STTHR); si->tx_buff.len -= 1; } if (si->tx_buff.len == 0) { dev->stats.tx_packets++; dev->stats.tx_bytes += si->tx_buff.data - si->tx_buff.head; /* We need to ensure that the transmitter has finished. */ while ((stuart_readl(si, STLSR) & LSR_TEMT) == 0) cpu_relax(); si->last_clk = sched_clock(); /* * Ok, we've finished transmitting. Now enable * the receiver. Sometimes we get a receive IRQ * immediately after a transmit... */ if (si->newspeed) { pxa_irda_set_speed(si, si->newspeed); si->newspeed = 0; } else { /* enable IR Receiver, disable IR Transmitter */ stuart_writel(si, IrSR_IR_RECEIVE_ON | IrSR_XMODE_PULSE_1_6, STISR); /* enable STUART and receive interrupts */ stuart_writel(si, IER_UUE | IER_RLSE | IER_RAVIE | IER_RTIOE, STIER); } /* I'm hungry! */ netif_wake_queue(dev); } break; } return IRQ_HANDLED; } /* FIR Receive DMA interrupt handler */ static void pxa_irda_fir_dma_rx_irq(void *data) { struct net_device *dev = data; struct pxa_irda *si = netdev_priv(dev); dmaengine_terminate_all(si->rxdma); netdev_dbg(dev, "pxa_ir: fir rx dma bus error\n"); } /* FIR Transmit DMA interrupt handler */ static void pxa_irda_fir_dma_tx_irq(void *data) { struct net_device *dev = data; struct pxa_irda *si = netdev_priv(dev); dmaengine_terminate_all(si->txdma); if (dmaengine_tx_status(si->txdma, si->tx_cookie, NULL) == DMA_ERROR) { dev->stats.tx_errors++; } else { dev->stats.tx_packets++; dev->stats.tx_bytes += si->dma_tx_buff_len; } while (ficp_readl(si, ICSR1) & ICSR1_TBY) cpu_relax(); si->last_clk = sched_clock(); /* * HACK: It looks like the TBY bit is dropped too soon. * Without this delay things break. */ udelay(120); if (si->newspeed) { pxa_irda_set_speed(si, si->newspeed); si->newspeed = 0; } else { int i = 64; ficp_writel(si, 0, ICCR0); pxa_irda_fir_dma_rx_start(si); while ((ficp_readl(si, ICSR1) & ICSR1_RNE) && i--) ficp_readl(si, ICDR); ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0); if (i < 0) printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n"); } netif_wake_queue(dev); } /* EIF(Error in FIFO/End in Frame) handler for FIR */ static void pxa_irda_fir_irq_eif(struct pxa_irda *si, struct net_device *dev, int icsr0) { unsigned int len, stat, data; struct dma_tx_state state; /* Get the current data position. */ dmaengine_tx_status(si->rxdma, si->rx_cookie, &state); len = IRDA_FRAME_SIZE_LIMIT - state.residue; do { /* Read Status, and then Data. */ stat = ficp_readl(si, ICSR1); rmb(); data = ficp_readl(si, ICDR); if (stat & (ICSR1_CRE | ICSR1_ROR)) { dev->stats.rx_errors++; if (stat & ICSR1_CRE) { printk(KERN_DEBUG "pxa_ir: fir receive CRC error\n"); dev->stats.rx_crc_errors++; } if (stat & ICSR1_ROR) { printk(KERN_DEBUG "pxa_ir: fir receive overrun\n"); dev->stats.rx_over_errors++; } } else { si->dma_rx_buff[len++] = data; } /* If we hit the end of frame, there's no point in continuing. */ if (stat & ICSR1_EOF) break; } while (ficp_readl(si, ICSR0) & ICSR0_EIF); if (stat & ICSR1_EOF) { /* end of frame. */ struct sk_buff *skb; if (icsr0 & ICSR0_FRE) { printk(KERN_ERR "pxa_ir: dropping erroneous frame\n"); dev->stats.rx_dropped++; return; } skb = alloc_skb(len+1,GFP_ATOMIC); if (!skb) { printk(KERN_ERR "pxa_ir: fir out of memory for receive skb\n"); dev->stats.rx_dropped++; return; } /* Align IP header to 20 bytes */ skb_reserve(skb, 1); skb_copy_to_linear_data(skb, si->dma_rx_buff, len); skb_put(skb, len); /* Feed it to IrLAP */ skb->dev = dev; skb_reset_mac_header(skb); skb->protocol = htons(ETH_P_IRDA); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += len; } } /* FIR interrupt handler */ static irqreturn_t pxa_irda_fir_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct pxa_irda *si = netdev_priv(dev); int icsr0, i = 64; /* stop RX DMA */ dmaengine_terminate_all(si->rxdma); si->last_clk = sched_clock(); icsr0 = ficp_readl(si, ICSR0); if (icsr0 & (ICSR0_FRE | ICSR0_RAB)) { if (icsr0 & ICSR0_FRE) { printk(KERN_DEBUG "pxa_ir: fir receive frame error\n"); dev->stats.rx_frame_errors++; } else { printk(KERN_DEBUG "pxa_ir: fir receive abort\n"); dev->stats.rx_errors++; } ficp_writel(si, icsr0 & (ICSR0_FRE | ICSR0_RAB), ICSR0); } if (icsr0 & ICSR0_EIF) { /* An error in FIFO occurred, or there is a end of frame */ pxa_irda_fir_irq_eif(si, dev, icsr0); } ficp_writel(si, 0, ICCR0); pxa_irda_fir_dma_rx_start(si); while ((ficp_readl(si, ICSR1) & ICSR1_RNE) && i--) ficp_readl(si, ICDR); ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0); if (i < 0) printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n"); return IRQ_HANDLED; } /* hard_xmit interface of irda device */ static int pxa_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) { struct pxa_irda *si = netdev_priv(dev); int speed = irda_get_next_speed(skb); /* * Does this packet contain a request to change the interface * speed? If so, remember it until we complete the transmission * of this frame. */ if (speed != si->speed && speed != -1) si->newspeed = speed; /* * If this is an empty frame, we can bypass a lot. */ if (skb->len == 0) { if (si->newspeed) { si->newspeed = 0; pxa_irda_set_speed(si, speed); } dev_kfree_skb(skb); return NETDEV_TX_OK; } netif_stop_queue(dev); if (!IS_FIR(si)) { si->tx_buff.data = si->tx_buff.head; si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, si->tx_buff.truesize); /* Disable STUART interrupts and switch to transmit mode. */ stuart_writel(si, 0, STIER); stuart_writel(si, IrSR_IR_TRANSMIT_ON | IrSR_XMODE_PULSE_1_6, STISR); /* enable STUART and transmit interrupts */ stuart_writel(si, IER_UUE | IER_TIE, STIER); } else { unsigned long mtt = irda_get_mtt(skb); si->dma_tx_buff_len = skb->len; skb_copy_from_linear_data(skb, si->dma_tx_buff, skb->len); if (mtt) while ((sched_clock() - si->last_clk) * 1000 < mtt) cpu_relax(); /* stop RX DMA, disable FICP */ dmaengine_terminate_all(si->rxdma); ficp_writel(si, 0, ICCR0); pxa_irda_fir_dma_tx_start(si); ficp_writel(si, ICCR0_ITR | ICCR0_TXE, ICCR0); } dev_kfree_skb(skb); return NETDEV_TX_OK; } static int pxa_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) { struct if_irda_req *rq = (struct if_irda_req *)ifreq; struct pxa_irda *si = netdev_priv(dev); int ret; switch (cmd) { case SIOCSBANDWIDTH: ret = -EPERM; if (capable(CAP_NET_ADMIN)) { /* * We are unable to set the speed if the * device is not running. */ if (netif_running(dev)) { ret = pxa_irda_set_speed(si, rq->ifr_baudrate); } else { printk(KERN_INFO "pxa_ir: SIOCSBANDWIDTH: !netif_running\n"); ret = 0; } } break; case SIOCSMEDIABUSY: ret = -EPERM; if (capable(CAP_NET_ADMIN)) { irda_device_set_media_busy(dev, TRUE); ret = 0; } break; case SIOCGRECEIVING: ret = 0; rq->ifr_receiving = IS_FIR(si) ? 0 : si->rx_buff.state != OUTSIDE_FRAME; break; default: ret = -EOPNOTSUPP; break; } return ret; } static void pxa_irda_startup(struct pxa_irda *si) { /* Disable STUART interrupts */ stuart_writel(si, 0, STIER); /* enable STUART interrupt to the processor */ stuart_writel(si, MCR_OUT2, STMCR); /* configure SIR frame format: StartBit - Data 7 ... Data 0 - Stop Bit */ stuart_writel(si, LCR_WLS0 | LCR_WLS1, STLCR); /* enable FIFO, we use FIFO to improve performance */ stuart_writel(si, FCR_TRFIFOE | FCR_ITL_32, STFCR); /* disable FICP */ ficp_writel(si, 0, ICCR0); /* configure FICP ICCR2 */ ficp_writel(si, ICCR2_TXP | ICCR2_TRIG_32, ICCR2); /* force SIR reinitialization */ si->speed = 4000000; pxa_irda_set_speed(si, 9600); printk(KERN_DEBUG "pxa_ir: irda startup\n"); } static void pxa_irda_shutdown(struct pxa_irda *si) { unsigned long flags; local_irq_save(flags); /* disable STUART and interrupt */ stuart_writel(si, 0, STIER); /* disable STUART SIR mode */ stuart_writel(si, 0, STISR); /* disable DMA */ dmaengine_terminate_all(si->rxdma); dmaengine_terminate_all(si->txdma); /* disable FICP */ ficp_writel(si, 0, ICCR0); /* disable the STUART or FICP clocks */ pxa_irda_disable_clk(si); local_irq_restore(flags); /* power off board transceiver */ pxa_irda_set_mode(si, IR_OFF); printk(KERN_DEBUG "pxa_ir: irda shutdown\n"); } static int pxa_irda_start(struct net_device *dev) { struct pxa_irda *si = netdev_priv(dev); dma_cap_mask_t mask; struct dma_slave_config config; struct pxad_param param; int err; si->speed = 9600; err = request_irq(si->uart_irq, pxa_irda_sir_irq, 0, dev->name, dev); if (err) goto err_irq1; err = request_irq(si->icp_irq, pxa_irda_fir_irq, 0, dev->name, dev); if (err) goto err_irq2; /* * The interrupt must remain disabled for now. */ disable_irq(si->uart_irq); disable_irq(si->icp_irq); err = -EBUSY; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); param.prio = PXAD_PRIO_LOWEST; memset(&config, 0, sizeof(config)); config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; config.src_addr = (dma_addr_t)si->irda_base + ICDR; config.dst_addr = (dma_addr_t)si->irda_base + ICDR; config.src_maxburst = 32; config.dst_maxburst = 32; param.drcmr = si->drcmr_rx; si->rxdma = dma_request_slave_channel_compat(mask, pxad_filter_fn, ¶m, &dev->dev, "rx"); if (!si->rxdma) goto err_rx_dma; param.drcmr = si->drcmr_tx; si->txdma = dma_request_slave_channel_compat(mask, pxad_filter_fn, ¶m, &dev->dev, "tx"); if (!si->txdma) goto err_tx_dma; err = dmaengine_slave_config(si->rxdma, &config); if (err) goto err_dma_rx_buff; err = dmaengine_slave_config(si->txdma, &config); if (err) goto err_dma_rx_buff; err = -ENOMEM; si->dma_rx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, &si->dma_rx_buff_phy, GFP_KERNEL); if (!si->dma_rx_buff) goto err_dma_rx_buff; si->dma_tx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, &si->dma_tx_buff_phy, GFP_KERNEL); if (!si->dma_tx_buff) goto err_dma_tx_buff; /* Setup the serial port for the initial speed. */ pxa_irda_startup(si); /* * Open a new IrLAP layer instance. */ si->irlap = irlap_open(dev, &si->qos, "pxa"); err = -ENOMEM; if (!si->irlap) goto err_irlap; /* * Now enable the interrupt and start the queue */ enable_irq(si->uart_irq); enable_irq(si->icp_irq); netif_start_queue(dev); printk(KERN_DEBUG "pxa_ir: irda driver opened\n"); return 0; err_irlap: pxa_irda_shutdown(si); dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy); err_dma_tx_buff: dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy); err_dma_rx_buff: dma_release_channel(si->txdma); err_tx_dma: dma_release_channel(si->rxdma); err_rx_dma: free_irq(si->icp_irq, dev); err_irq2: free_irq(si->uart_irq, dev); err_irq1: return err; } static int pxa_irda_stop(struct net_device *dev) { struct pxa_irda *si = netdev_priv(dev); netif_stop_queue(dev); pxa_irda_shutdown(si); /* Stop IrLAP */ if (si->irlap) { irlap_close(si->irlap); si->irlap = NULL; } free_irq(si->uart_irq, dev); free_irq(si->icp_irq, dev); dmaengine_terminate_all(si->rxdma); dmaengine_terminate_all(si->txdma); dma_release_channel(si->rxdma); dma_release_channel(si->txdma); if (si->dma_rx_buff) dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy); if (si->dma_tx_buff) dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy); printk(KERN_DEBUG "pxa_ir: irda driver closed\n"); return 0; } static int pxa_irda_suspend(struct platform_device *_dev, pm_message_t state) { struct net_device *dev = platform_get_drvdata(_dev); struct pxa_irda *si; if (dev && netif_running(dev)) { si = netdev_priv(dev); netif_device_detach(dev); pxa_irda_shutdown(si); } return 0; } static int pxa_irda_resume(struct platform_device *_dev) { struct net_device *dev = platform_get_drvdata(_dev); struct pxa_irda *si; if (dev && netif_running(dev)) { si = netdev_priv(dev); pxa_irda_startup(si); netif_device_attach(dev); netif_wake_queue(dev); } return 0; } static int pxa_irda_init_iobuf(iobuff_t *io, int size) { io->head = kmalloc(size, GFP_KERNEL | GFP_DMA); if (io->head != NULL) { io->truesize = size; io->in_frame = FALSE; io->state = OUTSIDE_FRAME; io->data = io->head; } return io->head ? 0 : -ENOMEM; } static const struct net_device_ops pxa_irda_netdev_ops = { .ndo_open = pxa_irda_start, .ndo_stop = pxa_irda_stop, .ndo_start_xmit = pxa_irda_hard_xmit, .ndo_do_ioctl = pxa_irda_ioctl, }; static int pxa_irda_probe(struct platform_device *pdev) { struct net_device *dev; struct resource *res; struct pxa_irda *si; void __iomem *ficp, *stuart; unsigned int baudrate_mask; int err; if (!pdev->dev.platform_data) return -ENODEV; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ficp = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ficp)) { dev_err(&pdev->dev, "resource ficp not defined\n"); return PTR_ERR(ficp); } res = platform_get_resource(pdev, IORESOURCE_MEM, 1); stuart = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(stuart)) { dev_err(&pdev->dev, "resource stuart not defined\n"); return PTR_ERR(stuart); } dev = alloc_irdadev(sizeof(struct pxa_irda)); if (!dev) { err = -ENOMEM; goto err_mem_1; } SET_NETDEV_DEV(dev, &pdev->dev); si = netdev_priv(dev); si->dev = &pdev->dev; si->pdata = pdev->dev.platform_data; si->irda_base = ficp; si->stuart_base = stuart; si->uart_irq = platform_get_irq(pdev, 0); si->icp_irq = platform_get_irq(pdev, 1); si->sir_clk = devm_clk_get(&pdev->dev, "UARTCLK"); si->fir_clk = devm_clk_get(&pdev->dev, "FICPCLK"); if (IS_ERR(si->sir_clk) || IS_ERR(si->fir_clk)) { err = PTR_ERR(IS_ERR(si->sir_clk) ? si->sir_clk : si->fir_clk); goto err_mem_4; } res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (res) si->drcmr_rx = res->start; res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (res) si->drcmr_tx = res->start; /* * Initialise the SIR buffers */ err = pxa_irda_init_iobuf(&si->rx_buff, 14384); if (err) goto err_mem_4; err = pxa_irda_init_iobuf(&si->tx_buff, 4000); if (err) goto err_mem_5; if (gpio_is_valid(si->pdata->gpio_pwdown)) { err = gpio_request(si->pdata->gpio_pwdown, "IrDA switch"); if (err) goto err_startup; err = gpio_direction_output(si->pdata->gpio_pwdown, !si->pdata->gpio_pwdown_inverted); if (err) { gpio_free(si->pdata->gpio_pwdown); goto err_startup; } } if (si->pdata->startup) { err = si->pdata->startup(si->dev); if (err) goto err_startup; } if (gpio_is_valid(si->pdata->gpio_pwdown) && si->pdata->startup) dev_warn(si->dev, "gpio_pwdown and startup() both defined!\n"); dev->netdev_ops = &pxa_irda_netdev_ops; irda_init_max_qos_capabilies(&si->qos); baudrate_mask = 0; if (si->pdata->transceiver_cap & IR_SIRMODE) baudrate_mask |= IR_9600|IR_19200|IR_38400|IR_57600|IR_115200; if (si->pdata->transceiver_cap & IR_FIRMODE) baudrate_mask |= IR_4000000 << 8; si->qos.baud_rate.bits &= baudrate_mask; si->qos.min_turn_time.bits = 7; /* 1ms or more */ irda_qos_bits_to_value(&si->qos); err = register_netdev(dev); if (err == 0) platform_set_drvdata(pdev, dev); if (err) { if (si->pdata->shutdown) si->pdata->shutdown(si->dev); err_startup: kfree(si->tx_buff.head); err_mem_5: kfree(si->rx_buff.head); err_mem_4: free_netdev(dev); } err_mem_1: return err; } static int pxa_irda_remove(struct platform_device *_dev) { struct net_device *dev = platform_get_drvdata(_dev); if (dev) { struct pxa_irda *si = netdev_priv(dev); unregister_netdev(dev); if (gpio_is_valid(si->pdata->gpio_pwdown)) gpio_free(si->pdata->gpio_pwdown); if (si->pdata->shutdown) si->pdata->shutdown(si->dev); kfree(si->tx_buff.head); kfree(si->rx_buff.head); free_netdev(dev); } return 0; } static struct platform_driver pxa_ir_driver = { .driver = { .name = "pxa2xx-ir", }, .probe = pxa_irda_probe, .remove = pxa_irda_remove, .suspend = pxa_irda_suspend, .resume = pxa_irda_resume, }; module_platform_driver(pxa_ir_driver); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pxa2xx-ir");