/* * Copyright (c) 2015, Sony Mobile Communications Inc. * Copyright (c) 2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include /* For TIOCINQ/OUTQ */ #include #include "qrtr.h" #define QRTR_PROTO_VER 1 /* auto-bind range */ #define QRTR_MIN_EPH_SOCKET 0x4000 #define QRTR_MAX_EPH_SOCKET 0x7fff enum qrtr_pkt_type { QRTR_TYPE_DATA = 1, QRTR_TYPE_HELLO = 2, QRTR_TYPE_BYE = 3, QRTR_TYPE_NEW_SERVER = 4, QRTR_TYPE_DEL_SERVER = 5, QRTR_TYPE_DEL_CLIENT = 6, QRTR_TYPE_RESUME_TX = 7, QRTR_TYPE_EXIT = 8, QRTR_TYPE_PING = 9, }; /** * struct qrtr_hdr - (I|R)PCrouter packet header * @version: protocol version * @type: packet type; one of QRTR_TYPE_* * @src_node_id: source node * @src_port_id: source port * @confirm_rx: boolean; whether a resume-tx packet should be send in reply * @size: length of packet, excluding this header * @dst_node_id: destination node * @dst_port_id: destination port */ struct qrtr_hdr { __le32 version; __le32 type; __le32 src_node_id; __le32 src_port_id; __le32 confirm_rx; __le32 size; __le32 dst_node_id; __le32 dst_port_id; } __packed; #define QRTR_HDR_SIZE sizeof(struct qrtr_hdr) #define QRTR_NODE_BCAST ((unsigned int)-1) #define QRTR_PORT_CTRL ((unsigned int)-2) struct qrtr_sock { /* WARNING: sk must be the first member */ struct sock sk; struct sockaddr_qrtr us; struct sockaddr_qrtr peer; }; static inline struct qrtr_sock *qrtr_sk(struct sock *sk) { BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0); return container_of(sk, struct qrtr_sock, sk); } static unsigned int qrtr_local_nid = -1; /* for node ids */ static RADIX_TREE(qrtr_nodes, GFP_KERNEL); /* broadcast list */ static LIST_HEAD(qrtr_all_nodes); /* lock for qrtr_nodes, qrtr_all_nodes and node reference */ static DEFINE_MUTEX(qrtr_node_lock); /* local port allocation management */ static DEFINE_IDR(qrtr_ports); static DEFINE_MUTEX(qrtr_port_lock); /** * struct qrtr_node - endpoint node * @ep_lock: lock for endpoint management and callbacks * @ep: endpoint * @ref: reference count for node * @nid: node id * @rx_queue: receive queue * @work: scheduled work struct for recv work * @item: list item for broadcast list */ struct qrtr_node { struct mutex ep_lock; struct qrtr_endpoint *ep; struct kref ref; unsigned int nid; struct sk_buff_head rx_queue; struct work_struct work; struct list_head item; }; /* Release node resources and free the node. * * Do not call directly, use qrtr_node_release. To be used with * kref_put_mutex. As such, the node mutex is expected to be locked on call. */ static void __qrtr_node_release(struct kref *kref) { struct qrtr_node *node = container_of(kref, struct qrtr_node, ref); if (node->nid != QRTR_EP_NID_AUTO) radix_tree_delete(&qrtr_nodes, node->nid); list_del(&node->item); mutex_unlock(&qrtr_node_lock); skb_queue_purge(&node->rx_queue); kfree(node); } /* Increment reference to node. */ static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node) { if (node) kref_get(&node->ref); return node; } /* Decrement reference to node and release as necessary. */ static void qrtr_node_release(struct qrtr_node *node) { if (!node) return; kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock); } /* Pass an outgoing packet socket buffer to the endpoint driver. */ static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb) { int rc = -ENODEV; mutex_lock(&node->ep_lock); if (node->ep) rc = node->ep->xmit(node->ep, skb); else kfree_skb(skb); mutex_unlock(&node->ep_lock); return rc; } /* Lookup node by id. * * callers must release with qrtr_node_release() */ static struct qrtr_node *qrtr_node_lookup(unsigned int nid) { struct qrtr_node *node; mutex_lock(&qrtr_node_lock); node = radix_tree_lookup(&qrtr_nodes, nid); node = qrtr_node_acquire(node); mutex_unlock(&qrtr_node_lock); return node; } /* Assign node id to node. * * This is mostly useful for automatic node id assignment, based on * the source id in the incoming packet. */ static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid) { if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO) return; mutex_lock(&qrtr_node_lock); radix_tree_insert(&qrtr_nodes, nid, node); node->nid = nid; mutex_unlock(&qrtr_node_lock); } /** * qrtr_endpoint_post() - post incoming data * @ep: endpoint handle * @data: data pointer * @len: size of data in bytes * * Return: 0 on success; negative error code on failure */ int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len) { struct qrtr_node *node = ep->node; const struct qrtr_hdr *phdr = data; struct sk_buff *skb; unsigned int psize; unsigned int size; unsigned int type; unsigned int ver; unsigned int dst; if (len < QRTR_HDR_SIZE || len & 3) return -EINVAL; ver = le32_to_cpu(phdr->version); size = le32_to_cpu(phdr->size); type = le32_to_cpu(phdr->type); dst = le32_to_cpu(phdr->dst_port_id); psize = (size + 3) & ~3; if (ver != QRTR_PROTO_VER) return -EINVAL; if (len != psize + QRTR_HDR_SIZE) return -EINVAL; if (dst != QRTR_PORT_CTRL && type != QRTR_TYPE_DATA) return -EINVAL; skb = netdev_alloc_skb(NULL, len); if (!skb) return -ENOMEM; skb_reset_transport_header(skb); memcpy(skb_put(skb, len), data, len); skb_queue_tail(&node->rx_queue, skb); schedule_work(&node->work); return 0; } EXPORT_SYMBOL_GPL(qrtr_endpoint_post); /* Allocate and construct a resume-tx packet. */ static struct sk_buff *qrtr_alloc_resume_tx(u32 src_node, u32 dst_node, u32 port) { const int pkt_len = 20; struct qrtr_hdr *hdr; struct sk_buff *skb; __le32 *buf; skb = alloc_skb(QRTR_HDR_SIZE + pkt_len, GFP_KERNEL); if (!skb) return NULL; skb_reset_transport_header(skb); hdr = (struct qrtr_hdr *)skb_put(skb, QRTR_HDR_SIZE); hdr->version = cpu_to_le32(QRTR_PROTO_VER); hdr->type = cpu_to_le32(QRTR_TYPE_RESUME_TX); hdr->src_node_id = cpu_to_le32(src_node); hdr->src_port_id = cpu_to_le32(QRTR_PORT_CTRL); hdr->confirm_rx = cpu_to_le32(0); hdr->size = cpu_to_le32(pkt_len); hdr->dst_node_id = cpu_to_le32(dst_node); hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL); buf = (__le32 *)skb_put(skb, pkt_len); memset(buf, 0, pkt_len); buf[0] = cpu_to_le32(QRTR_TYPE_RESUME_TX); buf[1] = cpu_to_le32(src_node); buf[2] = cpu_to_le32(port); return skb; } static struct qrtr_sock *qrtr_port_lookup(int port); static void qrtr_port_put(struct qrtr_sock *ipc); /* Handle and route a received packet. * * This will auto-reply with resume-tx packet as necessary. */ static void qrtr_node_rx_work(struct work_struct *work) { struct qrtr_node *node = container_of(work, struct qrtr_node, work); struct sk_buff *skb; while ((skb = skb_dequeue(&node->rx_queue)) != NULL) { const struct qrtr_hdr *phdr; u32 dst_node, dst_port; struct qrtr_sock *ipc; u32 src_node; int confirm; phdr = (const struct qrtr_hdr *)skb_transport_header(skb); src_node = le32_to_cpu(phdr->src_node_id); dst_node = le32_to_cpu(phdr->dst_node_id); dst_port = le32_to_cpu(phdr->dst_port_id); confirm = !!phdr->confirm_rx; qrtr_node_assign(node, src_node); ipc = qrtr_port_lookup(dst_port); if (!ipc) { kfree_skb(skb); } else { if (sock_queue_rcv_skb(&ipc->sk, skb)) kfree_skb(skb); qrtr_port_put(ipc); } if (confirm) { skb = qrtr_alloc_resume_tx(dst_node, node->nid, dst_port); if (!skb) break; if (qrtr_node_enqueue(node, skb)) break; } } } /** * qrtr_endpoint_register() - register a new endpoint * @ep: endpoint to register * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment * Return: 0 on success; negative error code on failure * * The specified endpoint must have the xmit function pointer set on call. */ int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid) { struct qrtr_node *node; if (!ep || !ep->xmit) return -EINVAL; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return -ENOMEM; INIT_WORK(&node->work, qrtr_node_rx_work); kref_init(&node->ref); mutex_init(&node->ep_lock); skb_queue_head_init(&node->rx_queue); node->nid = QRTR_EP_NID_AUTO; node->ep = ep; qrtr_node_assign(node, nid); mutex_lock(&qrtr_node_lock); list_add(&node->item, &qrtr_all_nodes); mutex_unlock(&qrtr_node_lock); ep->node = node; return 0; } EXPORT_SYMBOL_GPL(qrtr_endpoint_register); /** * qrtr_endpoint_unregister - unregister endpoint * @ep: endpoint to unregister */ void qrtr_endpoint_unregister(struct qrtr_endpoint *ep) { struct qrtr_node *node = ep->node; mutex_lock(&node->ep_lock); node->ep = NULL; mutex_unlock(&node->ep_lock); qrtr_node_release(node); ep->node = NULL; } EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister); /* Lookup socket by port. * * Callers must release with qrtr_port_put() */ static struct qrtr_sock *qrtr_port_lookup(int port) { struct qrtr_sock *ipc; if (port == QRTR_PORT_CTRL) port = 0; mutex_lock(&qrtr_port_lock); ipc = idr_find(&qrtr_ports, port); if (ipc) sock_hold(&ipc->sk); mutex_unlock(&qrtr_port_lock); return ipc; } /* Release acquired socket. */ static void qrtr_port_put(struct qrtr_sock *ipc) { sock_put(&ipc->sk); } /* Remove port assignment. */ static void qrtr_port_remove(struct qrtr_sock *ipc) { int port = ipc->us.sq_port; if (port == QRTR_PORT_CTRL) port = 0; __sock_put(&ipc->sk); mutex_lock(&qrtr_port_lock); idr_remove(&qrtr_ports, port); mutex_unlock(&qrtr_port_lock); } /* Assign port number to socket. * * Specify port in the integer pointed to by port, and it will be adjusted * on return as necesssary. * * Port may be: * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET] * QRTR_MIN_EPH_SOCKET: Specified; available to all */ static int qrtr_port_assign(struct qrtr_sock *ipc, int *port) { int rc; mutex_lock(&qrtr_port_lock); if (!*port) { rc = idr_alloc(&qrtr_ports, ipc, QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET + 1, GFP_ATOMIC); if (rc >= 0) *port = rc; } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) { rc = -EACCES; } else if (*port == QRTR_PORT_CTRL) { rc = idr_alloc(&qrtr_ports, ipc, 0, 1, GFP_ATOMIC); } else { rc = idr_alloc(&qrtr_ports, ipc, *port, *port + 1, GFP_ATOMIC); if (rc >= 0) *port = rc; } mutex_unlock(&qrtr_port_lock); if (rc == -ENOSPC) return -EADDRINUSE; else if (rc < 0) return rc; sock_hold(&ipc->sk); return 0; } /* Bind socket to address. * * Socket should be locked upon call. */ static int __qrtr_bind(struct socket *sock, const struct sockaddr_qrtr *addr, int zapped) { struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int port; int rc; /* rebinding ok */ if (!zapped && addr->sq_port == ipc->us.sq_port) return 0; port = addr->sq_port; rc = qrtr_port_assign(ipc, &port); if (rc) return rc; /* unbind previous, if any */ if (!zapped) qrtr_port_remove(ipc); ipc->us.sq_port = port; sock_reset_flag(sk, SOCK_ZAPPED); return 0; } /* Auto bind to an ephemeral port. */ static int qrtr_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct sockaddr_qrtr addr; if (!sock_flag(sk, SOCK_ZAPPED)) return 0; addr.sq_family = AF_QIPCRTR; addr.sq_node = qrtr_local_nid; addr.sq_port = 0; return __qrtr_bind(sock, &addr, 1); } /* Bind socket to specified sockaddr. */ static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int rc; if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) return -EINVAL; if (addr->sq_node != ipc->us.sq_node) return -EINVAL; lock_sock(sk); rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED)); release_sock(sk); return rc; } /* Queue packet to local peer socket. */ static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb) { const struct qrtr_hdr *phdr; struct qrtr_sock *ipc; phdr = (const struct qrtr_hdr *)skb_transport_header(skb); ipc = qrtr_port_lookup(le32_to_cpu(phdr->dst_port_id)); if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */ kfree_skb(skb); return -ENODEV; } if (sock_queue_rcv_skb(&ipc->sk, skb)) { qrtr_port_put(ipc); kfree_skb(skb); return -ENOSPC; } qrtr_port_put(ipc); return 0; } /* Queue packet for broadcast. */ static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb) { struct sk_buff *skbn; mutex_lock(&qrtr_node_lock); list_for_each_entry(node, &qrtr_all_nodes, item) { skbn = skb_clone(skb, GFP_KERNEL); if (!skbn) break; skb_set_owner_w(skbn, skb->sk); qrtr_node_enqueue(node, skbn); } mutex_unlock(&qrtr_node_lock); qrtr_local_enqueue(node, skb); return 0; } static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; struct qrtr_node *node; struct qrtr_hdr *hdr; struct sk_buff *skb; size_t plen; int rc; if (msg->msg_flags & ~(MSG_DONTWAIT)) return -EINVAL; if (len > 65535) return -EMSGSIZE; lock_sock(sk); if (addr) { if (msg->msg_namelen < sizeof(*addr)) { release_sock(sk); return -EINVAL; } if (addr->sq_family != AF_QIPCRTR) { release_sock(sk); return -EINVAL; } rc = qrtr_autobind(sock); if (rc) { release_sock(sk); return rc; } } else if (sk->sk_state == TCP_ESTABLISHED) { addr = &ipc->peer; } else { release_sock(sk); return -ENOTCONN; } node = NULL; if (addr->sq_node == QRTR_NODE_BCAST) { enqueue_fn = qrtr_bcast_enqueue; } else if (addr->sq_node == ipc->us.sq_node) { enqueue_fn = qrtr_local_enqueue; } else { enqueue_fn = qrtr_node_enqueue; node = qrtr_node_lookup(addr->sq_node); if (!node) { release_sock(sk); return -ECONNRESET; } } plen = (len + 3) & ~3; skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_SIZE, msg->msg_flags & MSG_DONTWAIT, &rc); if (!skb) goto out_node; skb_reset_transport_header(skb); skb_put(skb, len + QRTR_HDR_SIZE); hdr = (struct qrtr_hdr *)skb_transport_header(skb); hdr->version = cpu_to_le32(QRTR_PROTO_VER); hdr->src_node_id = cpu_to_le32(ipc->us.sq_node); hdr->src_port_id = cpu_to_le32(ipc->us.sq_port); hdr->confirm_rx = cpu_to_le32(0); hdr->size = cpu_to_le32(len); hdr->dst_node_id = cpu_to_le32(addr->sq_node); hdr->dst_port_id = cpu_to_le32(addr->sq_port); rc = skb_copy_datagram_from_iter(skb, QRTR_HDR_SIZE, &msg->msg_iter, len); if (rc) { kfree_skb(skb); goto out_node; } if (plen != len) { skb_pad(skb, plen - len); skb_put(skb, plen - len); } if (ipc->us.sq_port == QRTR_PORT_CTRL) { if (len < 4) { rc = -EINVAL; kfree_skb(skb); goto out_node; } /* control messages already require the type as 'command' */ skb_copy_bits(skb, QRTR_HDR_SIZE, &hdr->type, 4); } else { hdr->type = cpu_to_le32(QRTR_TYPE_DATA); } rc = enqueue_fn(node, skb); if (rc >= 0) rc = len; out_node: qrtr_node_release(node); release_sock(sk); return rc; } static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name); const struct qrtr_hdr *phdr; struct sock *sk = sock->sk; struct sk_buff *skb; int copied, rc; lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { release_sock(sk); return -EADDRNOTAVAIL; } skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &rc); if (!skb) { release_sock(sk); return rc; } phdr = (const struct qrtr_hdr *)skb_transport_header(skb); copied = le32_to_cpu(phdr->size); if (copied > size) { copied = size; msg->msg_flags |= MSG_TRUNC; } rc = skb_copy_datagram_msg(skb, QRTR_HDR_SIZE, msg, copied); if (rc < 0) goto out; rc = copied; if (addr) { addr->sq_family = AF_QIPCRTR; addr->sq_node = le32_to_cpu(phdr->src_node_id); addr->sq_port = le32_to_cpu(phdr->src_port_id); msg->msg_namelen = sizeof(*addr); } out: skb_free_datagram(sk, skb); release_sock(sk); return rc; } static int qrtr_connect(struct socket *sock, struct sockaddr *saddr, int len, int flags) { DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr); struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; int rc; if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR) return -EINVAL; lock_sock(sk); sk->sk_state = TCP_CLOSE; sock->state = SS_UNCONNECTED; rc = qrtr_autobind(sock); if (rc) { release_sock(sk); return rc; } ipc->peer = *addr; sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; release_sock(sk); return 0; } static int qrtr_getname(struct socket *sock, struct sockaddr *saddr, int *len, int peer) { struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sockaddr_qrtr qaddr; struct sock *sk = sock->sk; lock_sock(sk); if (peer) { if (sk->sk_state != TCP_ESTABLISHED) { release_sock(sk); return -ENOTCONN; } qaddr = ipc->peer; } else { qaddr = ipc->us; } release_sock(sk); *len = sizeof(qaddr); qaddr.sq_family = AF_QIPCRTR; memcpy(saddr, &qaddr, sizeof(qaddr)); return 0; } static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; struct qrtr_sock *ipc = qrtr_sk(sock->sk); struct sock *sk = sock->sk; struct sockaddr_qrtr *sq; struct sk_buff *skb; struct ifreq ifr; long len = 0; int rc = 0; lock_sock(sk); switch (cmd) { case TIOCOUTQ: len = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (len < 0) len = 0; rc = put_user(len, (int __user *)argp); break; case TIOCINQ: skb = skb_peek(&sk->sk_receive_queue); if (skb) len = skb->len - QRTR_HDR_SIZE; rc = put_user(len, (int __user *)argp); break; case SIOCGIFADDR: if (copy_from_user(&ifr, argp, sizeof(ifr))) { rc = -EFAULT; break; } sq = (struct sockaddr_qrtr *)&ifr.ifr_addr; *sq = ipc->us; if (copy_to_user(argp, &ifr, sizeof(ifr))) { rc = -EFAULT; break; } break; case SIOCGSTAMP: rc = sock_get_timestamp(sk, argp); break; case SIOCADDRT: case SIOCDELRT: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: rc = -EINVAL; break; default: rc = -ENOIOCTLCMD; break; } release_sock(sk); return rc; } static int qrtr_release(struct socket *sock) { struct sock *sk = sock->sk; struct qrtr_sock *ipc; if (!sk) return 0; lock_sock(sk); ipc = qrtr_sk(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); sock_set_flag(sk, SOCK_DEAD); sock->sk = NULL; if (!sock_flag(sk, SOCK_ZAPPED)) qrtr_port_remove(ipc); skb_queue_purge(&sk->sk_receive_queue); release_sock(sk); sock_put(sk); return 0; } static const struct proto_ops qrtr_proto_ops = { .owner = THIS_MODULE, .family = AF_QIPCRTR, .bind = qrtr_bind, .connect = qrtr_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .listen = sock_no_listen, .sendmsg = qrtr_sendmsg, .recvmsg = qrtr_recvmsg, .getname = qrtr_getname, .ioctl = qrtr_ioctl, .poll = datagram_poll, .shutdown = sock_no_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .release = qrtr_release, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto qrtr_proto = { .name = "QIPCRTR", .owner = THIS_MODULE, .obj_size = sizeof(struct qrtr_sock), }; static int qrtr_create(struct net *net, struct socket *sock, int protocol, int kern) { struct qrtr_sock *ipc; struct sock *sk; if (sock->type != SOCK_DGRAM) return -EPROTOTYPE; sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern); if (!sk) return -ENOMEM; sock_set_flag(sk, SOCK_ZAPPED); sock_init_data(sock, sk); sock->ops = &qrtr_proto_ops; ipc = qrtr_sk(sk); ipc->us.sq_family = AF_QIPCRTR; ipc->us.sq_node = qrtr_local_nid; ipc->us.sq_port = 0; return 0; } static const struct nla_policy qrtr_policy[IFA_MAX + 1] = { [IFA_LOCAL] = { .type = NLA_U32 }, }; static int qrtr_addr_doit(struct sk_buff *skb, struct nlmsghdr *nlh) { struct nlattr *tb[IFA_MAX + 1]; struct ifaddrmsg *ifm; int rc; if (!netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; if (!netlink_capable(skb, CAP_SYS_ADMIN)) return -EPERM; ASSERT_RTNL(); rc = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, qrtr_policy); if (rc < 0) return rc; ifm = nlmsg_data(nlh); if (!tb[IFA_LOCAL]) return -EINVAL; qrtr_local_nid = nla_get_u32(tb[IFA_LOCAL]); return 0; } static const struct net_proto_family qrtr_family = { .owner = THIS_MODULE, .family = AF_QIPCRTR, .create = qrtr_create, }; static int __init qrtr_proto_init(void) { int rc; rc = proto_register(&qrtr_proto, 1); if (rc) return rc; rc = sock_register(&qrtr_family); if (rc) { proto_unregister(&qrtr_proto); return rc; } rtnl_register(PF_QIPCRTR, RTM_NEWADDR, qrtr_addr_doit, NULL, NULL); return 0; } module_init(qrtr_proto_init); static void __exit qrtr_proto_fini(void) { rtnl_unregister(PF_QIPCRTR, RTM_NEWADDR); sock_unregister(qrtr_family.family); proto_unregister(&qrtr_proto); } module_exit(qrtr_proto_fini); MODULE_DESCRIPTION("Qualcomm IPC-router driver"); MODULE_LICENSE("GPL v2");