// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "asm/bug.h" #include "bpf_counter.h" #include "callchain.h" #include "cgroup.h" #include "counts.h" #include "event.h" #include "evsel.h" #include "util/env.h" #include "util/evsel_config.h" #include "util/evsel_fprintf.h" #include "evlist.h" #include #include "thread_map.h" #include "target.h" #include "perf_regs.h" #include "record.h" #include "debug.h" #include "trace-event.h" #include "stat.h" #include "string2.h" #include "memswap.h" #include "util.h" #include "hashmap.h" #include "pmu-hybrid.h" #include "../perf-sys.h" #include "util/parse-branch-options.h" #include #include #include struct perf_missing_features perf_missing_features; static clockid_t clockid; static int evsel__no_extra_init(struct evsel *evsel __maybe_unused) { return 0; } void __weak test_attr__ready(void) { } static void evsel__no_extra_fini(struct evsel *evsel __maybe_unused) { } static struct { size_t size; int (*init)(struct evsel *evsel); void (*fini)(struct evsel *evsel); } perf_evsel__object = { .size = sizeof(struct evsel), .init = evsel__no_extra_init, .fini = evsel__no_extra_fini, }; int evsel__object_config(size_t object_size, int (*init)(struct evsel *evsel), void (*fini)(struct evsel *evsel)) { if (object_size == 0) goto set_methods; if (perf_evsel__object.size > object_size) return -EINVAL; perf_evsel__object.size = object_size; set_methods: if (init != NULL) perf_evsel__object.init = init; if (fini != NULL) perf_evsel__object.fini = fini; return 0; } #define FD(e, x, y) (*(int *)xyarray__entry(e->core.fd, x, y)) int __evsel__sample_size(u64 sample_type) { u64 mask = sample_type & PERF_SAMPLE_MASK; int size = 0; int i; for (i = 0; i < 64; i++) { if (mask & (1ULL << i)) size++; } size *= sizeof(u64); return size; } /** * __perf_evsel__calc_id_pos - calculate id_pos. * @sample_type: sample type * * This function returns the position of the event id (PERF_SAMPLE_ID or * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct * perf_record_sample. */ static int __perf_evsel__calc_id_pos(u64 sample_type) { int idx = 0; if (sample_type & PERF_SAMPLE_IDENTIFIER) return 0; if (!(sample_type & PERF_SAMPLE_ID)) return -1; if (sample_type & PERF_SAMPLE_IP) idx += 1; if (sample_type & PERF_SAMPLE_TID) idx += 1; if (sample_type & PERF_SAMPLE_TIME) idx += 1; if (sample_type & PERF_SAMPLE_ADDR) idx += 1; return idx; } /** * __perf_evsel__calc_is_pos - calculate is_pos. * @sample_type: sample type * * This function returns the position (counting backwards) of the event id * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if * sample_id_all is used there is an id sample appended to non-sample events. */ static int __perf_evsel__calc_is_pos(u64 sample_type) { int idx = 1; if (sample_type & PERF_SAMPLE_IDENTIFIER) return 1; if (!(sample_type & PERF_SAMPLE_ID)) return -1; if (sample_type & PERF_SAMPLE_CPU) idx += 1; if (sample_type & PERF_SAMPLE_STREAM_ID) idx += 1; return idx; } void evsel__calc_id_pos(struct evsel *evsel) { evsel->id_pos = __perf_evsel__calc_id_pos(evsel->core.attr.sample_type); evsel->is_pos = __perf_evsel__calc_is_pos(evsel->core.attr.sample_type); } void __evsel__set_sample_bit(struct evsel *evsel, enum perf_event_sample_format bit) { if (!(evsel->core.attr.sample_type & bit)) { evsel->core.attr.sample_type |= bit; evsel->sample_size += sizeof(u64); evsel__calc_id_pos(evsel); } } void __evsel__reset_sample_bit(struct evsel *evsel, enum perf_event_sample_format bit) { if (evsel->core.attr.sample_type & bit) { evsel->core.attr.sample_type &= ~bit; evsel->sample_size -= sizeof(u64); evsel__calc_id_pos(evsel); } } void evsel__set_sample_id(struct evsel *evsel, bool can_sample_identifier) { if (can_sample_identifier) { evsel__reset_sample_bit(evsel, ID); evsel__set_sample_bit(evsel, IDENTIFIER); } else { evsel__set_sample_bit(evsel, ID); } evsel->core.attr.read_format |= PERF_FORMAT_ID; } /** * evsel__is_function_event - Return whether given evsel is a function * trace event * * @evsel - evsel selector to be tested * * Return %true if event is function trace event */ bool evsel__is_function_event(struct evsel *evsel) { #define FUNCTION_EVENT "ftrace:function" return evsel->name && !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT)); #undef FUNCTION_EVENT } void evsel__init(struct evsel *evsel, struct perf_event_attr *attr, int idx) { perf_evsel__init(&evsel->core, attr, idx); evsel->tracking = !idx; evsel->unit = ""; evsel->scale = 1.0; evsel->max_events = ULONG_MAX; evsel->evlist = NULL; evsel->bpf_obj = NULL; evsel->bpf_fd = -1; INIT_LIST_HEAD(&evsel->config_terms); INIT_LIST_HEAD(&evsel->bpf_counter_list); perf_evsel__object.init(evsel); evsel->sample_size = __evsel__sample_size(attr->sample_type); evsel__calc_id_pos(evsel); evsel->cmdline_group_boundary = false; evsel->metric_expr = NULL; evsel->metric_name = NULL; evsel->metric_events = NULL; evsel->per_pkg_mask = NULL; evsel->collect_stat = false; evsel->pmu_name = NULL; } struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx) { struct evsel *evsel = zalloc(perf_evsel__object.size); if (!evsel) return NULL; evsel__init(evsel, attr, idx); if (evsel__is_bpf_output(evsel)) { evsel->core.attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), evsel->core.attr.sample_period = 1; } if (evsel__is_clock(evsel)) { /* * The evsel->unit points to static alias->unit * so it's ok to use static string in here. */ static const char *unit = "msec"; evsel->unit = unit; evsel->scale = 1e-6; } return evsel; } static bool perf_event_can_profile_kernel(void) { return perf_event_paranoid_check(1); } struct evsel *evsel__new_cycles(bool precise, __u32 type, __u64 config) { struct perf_event_attr attr = { .type = type, .config = config, .exclude_kernel = !perf_event_can_profile_kernel(), }; struct evsel *evsel; event_attr_init(&attr); if (!precise) goto new_event; /* * Now let the usual logic to set up the perf_event_attr defaults * to kick in when we return and before perf_evsel__open() is called. */ new_event: evsel = evsel__new(&attr); if (evsel == NULL) goto out; evsel->precise_max = true; /* use asprintf() because free(evsel) assumes name is allocated */ if (asprintf(&evsel->name, "cycles%s%s%.*s", (attr.precise_ip || attr.exclude_kernel) ? ":" : "", attr.exclude_kernel ? "u" : "", attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0) goto error_free; out: return evsel; error_free: evsel__delete(evsel); evsel = NULL; goto out; } static int evsel__copy_config_terms(struct evsel *dst, struct evsel *src) { struct evsel_config_term *pos, *tmp; list_for_each_entry(pos, &src->config_terms, list) { tmp = malloc(sizeof(*tmp)); if (tmp == NULL) return -ENOMEM; *tmp = *pos; if (tmp->free_str) { tmp->val.str = strdup(pos->val.str); if (tmp->val.str == NULL) { free(tmp); return -ENOMEM; } } list_add_tail(&tmp->list, &dst->config_terms); } return 0; } /** * evsel__clone - create a new evsel copied from @orig * @orig: original evsel * * The assumption is that @orig is not configured nor opened yet. * So we only care about the attributes that can be set while it's parsed. */ struct evsel *evsel__clone(struct evsel *orig) { struct evsel *evsel; BUG_ON(orig->core.fd); BUG_ON(orig->counts); BUG_ON(orig->priv); BUG_ON(orig->per_pkg_mask); /* cannot handle BPF objects for now */ if (orig->bpf_obj) return NULL; evsel = evsel__new(&orig->core.attr); if (evsel == NULL) return NULL; evsel->core.cpus = perf_cpu_map__get(orig->core.cpus); evsel->core.own_cpus = perf_cpu_map__get(orig->core.own_cpus); evsel->core.threads = perf_thread_map__get(orig->core.threads); evsel->core.nr_members = orig->core.nr_members; evsel->core.system_wide = orig->core.system_wide; if (orig->name) { evsel->name = strdup(orig->name); if (evsel->name == NULL) goto out_err; } if (orig->group_name) { evsel->group_name = strdup(orig->group_name); if (evsel->group_name == NULL) goto out_err; } if (orig->pmu_name) { evsel->pmu_name = strdup(orig->pmu_name); if (evsel->pmu_name == NULL) goto out_err; } if (orig->filter) { evsel->filter = strdup(orig->filter); if (evsel->filter == NULL) goto out_err; } evsel->cgrp = cgroup__get(orig->cgrp); evsel->tp_format = orig->tp_format; evsel->handler = orig->handler; evsel->core.leader = orig->core.leader; evsel->max_events = orig->max_events; evsel->tool_event = orig->tool_event; evsel->unit = orig->unit; evsel->scale = orig->scale; evsel->snapshot = orig->snapshot; evsel->per_pkg = orig->per_pkg; evsel->percore = orig->percore; evsel->precise_max = orig->precise_max; evsel->use_uncore_alias = orig->use_uncore_alias; evsel->is_libpfm_event = orig->is_libpfm_event; evsel->exclude_GH = orig->exclude_GH; evsel->sample_read = orig->sample_read; evsel->auto_merge_stats = orig->auto_merge_stats; evsel->collect_stat = orig->collect_stat; evsel->weak_group = orig->weak_group; evsel->use_config_name = orig->use_config_name; if (evsel__copy_config_terms(evsel, orig) < 0) goto out_err; return evsel; out_err: evsel__delete(evsel); return NULL; } /* * Returns pointer with encoded error via interface. */ struct evsel *evsel__newtp_idx(const char *sys, const char *name, int idx) { struct evsel *evsel = zalloc(perf_evsel__object.size); int err = -ENOMEM; if (evsel == NULL) { goto out_err; } else { struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME | PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD), }; if (asprintf(&evsel->name, "%s:%s", sys, name) < 0) goto out_free; evsel->tp_format = trace_event__tp_format(sys, name); if (IS_ERR(evsel->tp_format)) { err = PTR_ERR(evsel->tp_format); goto out_free; } event_attr_init(&attr); attr.config = evsel->tp_format->id; attr.sample_period = 1; evsel__init(evsel, &attr, idx); } return evsel; out_free: zfree(&evsel->name); free(evsel); out_err: return ERR_PTR(err); } const char *evsel__hw_names[PERF_COUNT_HW_MAX] = { "cycles", "instructions", "cache-references", "cache-misses", "branches", "branch-misses", "bus-cycles", "stalled-cycles-frontend", "stalled-cycles-backend", "ref-cycles", }; char *evsel__bpf_counter_events; bool evsel__match_bpf_counter_events(const char *name) { int name_len; bool match; char *ptr; if (!evsel__bpf_counter_events) return false; ptr = strstr(evsel__bpf_counter_events, name); name_len = strlen(name); /* check name matches a full token in evsel__bpf_counter_events */ match = (ptr != NULL) && ((ptr == evsel__bpf_counter_events) || (*(ptr - 1) == ',')) && ((*(ptr + name_len) == ',') || (*(ptr + name_len) == '\0')); return match; } static const char *__evsel__hw_name(u64 config) { if (config < PERF_COUNT_HW_MAX && evsel__hw_names[config]) return evsel__hw_names[config]; return "unknown-hardware"; } static int evsel__add_modifiers(struct evsel *evsel, char *bf, size_t size) { int colon = 0, r = 0; struct perf_event_attr *attr = &evsel->core.attr; bool exclude_guest_default = false; #define MOD_PRINT(context, mod) do { \ if (!attr->exclude_##context) { \ if (!colon) colon = ++r; \ r += scnprintf(bf + r, size - r, "%c", mod); \ } } while(0) if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) { MOD_PRINT(kernel, 'k'); MOD_PRINT(user, 'u'); MOD_PRINT(hv, 'h'); exclude_guest_default = true; } if (attr->precise_ip) { if (!colon) colon = ++r; r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp"); exclude_guest_default = true; } if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) { MOD_PRINT(host, 'H'); MOD_PRINT(guest, 'G'); } #undef MOD_PRINT if (colon) bf[colon - 1] = ':'; return r; } static int evsel__hw_name(struct evsel *evsel, char *bf, size_t size) { int r = scnprintf(bf, size, "%s", __evsel__hw_name(evsel->core.attr.config)); return r + evsel__add_modifiers(evsel, bf + r, size - r); } const char *evsel__sw_names[PERF_COUNT_SW_MAX] = { "cpu-clock", "task-clock", "page-faults", "context-switches", "cpu-migrations", "minor-faults", "major-faults", "alignment-faults", "emulation-faults", "dummy", }; static const char *__evsel__sw_name(u64 config) { if (config < PERF_COUNT_SW_MAX && evsel__sw_names[config]) return evsel__sw_names[config]; return "unknown-software"; } static int evsel__sw_name(struct evsel *evsel, char *bf, size_t size) { int r = scnprintf(bf, size, "%s", __evsel__sw_name(evsel->core.attr.config)); return r + evsel__add_modifiers(evsel, bf + r, size - r); } static int __evsel__bp_name(char *bf, size_t size, u64 addr, u64 type) { int r; r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr); if (type & HW_BREAKPOINT_R) r += scnprintf(bf + r, size - r, "r"); if (type & HW_BREAKPOINT_W) r += scnprintf(bf + r, size - r, "w"); if (type & HW_BREAKPOINT_X) r += scnprintf(bf + r, size - r, "x"); return r; } static int evsel__bp_name(struct evsel *evsel, char *bf, size_t size) { struct perf_event_attr *attr = &evsel->core.attr; int r = __evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type); return r + evsel__add_modifiers(evsel, bf + r, size - r); } const char *evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX][EVSEL__MAX_ALIASES] = { { "L1-dcache", "l1-d", "l1d", "L1-data", }, { "L1-icache", "l1-i", "l1i", "L1-instruction", }, { "LLC", "L2", }, { "dTLB", "d-tlb", "Data-TLB", }, { "iTLB", "i-tlb", "Instruction-TLB", }, { "branch", "branches", "bpu", "btb", "bpc", }, { "node", }, }; const char *evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX][EVSEL__MAX_ALIASES] = { { "load", "loads", "read", }, { "store", "stores", "write", }, { "prefetch", "prefetches", "speculative-read", "speculative-load", }, }; const char *evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX][EVSEL__MAX_ALIASES] = { { "refs", "Reference", "ops", "access", }, { "misses", "miss", }, }; #define C(x) PERF_COUNT_HW_CACHE_##x #define CACHE_READ (1 << C(OP_READ)) #define CACHE_WRITE (1 << C(OP_WRITE)) #define CACHE_PREFETCH (1 << C(OP_PREFETCH)) #define COP(x) (1 << x) /* * cache operation stat * L1I : Read and prefetch only * ITLB and BPU : Read-only */ static unsigned long evsel__hw_cache_stat[C(MAX)] = { [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(L1I)] = (CACHE_READ | CACHE_PREFETCH), [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), [C(ITLB)] = (CACHE_READ), [C(BPU)] = (CACHE_READ), [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH), }; bool evsel__is_cache_op_valid(u8 type, u8 op) { if (evsel__hw_cache_stat[type] & COP(op)) return true; /* valid */ else return false; /* invalid */ } int __evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result, char *bf, size_t size) { if (result) { return scnprintf(bf, size, "%s-%s-%s", evsel__hw_cache[type][0], evsel__hw_cache_op[op][0], evsel__hw_cache_result[result][0]); } return scnprintf(bf, size, "%s-%s", evsel__hw_cache[type][0], evsel__hw_cache_op[op][1]); } static int __evsel__hw_cache_name(u64 config, char *bf, size_t size) { u8 op, result, type = (config >> 0) & 0xff; const char *err = "unknown-ext-hardware-cache-type"; if (type >= PERF_COUNT_HW_CACHE_MAX) goto out_err; op = (config >> 8) & 0xff; err = "unknown-ext-hardware-cache-op"; if (op >= PERF_COUNT_HW_CACHE_OP_MAX) goto out_err; result = (config >> 16) & 0xff; err = "unknown-ext-hardware-cache-result"; if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX) goto out_err; err = "invalid-cache"; if (!evsel__is_cache_op_valid(type, op)) goto out_err; return __evsel__hw_cache_type_op_res_name(type, op, result, bf, size); out_err: return scnprintf(bf, size, "%s", err); } static int evsel__hw_cache_name(struct evsel *evsel, char *bf, size_t size) { int ret = __evsel__hw_cache_name(evsel->core.attr.config, bf, size); return ret + evsel__add_modifiers(evsel, bf + ret, size - ret); } static int evsel__raw_name(struct evsel *evsel, char *bf, size_t size) { int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->core.attr.config); return ret + evsel__add_modifiers(evsel, bf + ret, size - ret); } static int evsel__tool_name(char *bf, size_t size) { int ret = scnprintf(bf, size, "duration_time"); return ret; } const char *evsel__name(struct evsel *evsel) { char bf[128]; if (!evsel) goto out_unknown; if (evsel->name) return evsel->name; switch (evsel->core.attr.type) { case PERF_TYPE_RAW: evsel__raw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_HARDWARE: evsel__hw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_HW_CACHE: evsel__hw_cache_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_SOFTWARE: if (evsel->tool_event) evsel__tool_name(bf, sizeof(bf)); else evsel__sw_name(evsel, bf, sizeof(bf)); break; case PERF_TYPE_TRACEPOINT: scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint"); break; case PERF_TYPE_BREAKPOINT: evsel__bp_name(evsel, bf, sizeof(bf)); break; default: scnprintf(bf, sizeof(bf), "unknown attr type: %d", evsel->core.attr.type); break; } evsel->name = strdup(bf); if (evsel->name) return evsel->name; out_unknown: return "unknown"; } const char *evsel__group_name(struct evsel *evsel) { return evsel->group_name ?: "anon group"; } /* * Returns the group details for the specified leader, * with following rules. * * For record -e '{cycles,instructions}' * 'anon group { cycles:u, instructions:u }' * * For record -e 'cycles,instructions' and report --group * 'cycles:u, instructions:u' */ int evsel__group_desc(struct evsel *evsel, char *buf, size_t size) { int ret = 0; struct evsel *pos; const char *group_name = evsel__group_name(evsel); if (!evsel->forced_leader) ret = scnprintf(buf, size, "%s { ", group_name); ret += scnprintf(buf + ret, size - ret, "%s", evsel__name(evsel)); for_each_group_member(pos, evsel) ret += scnprintf(buf + ret, size - ret, ", %s", evsel__name(pos)); if (!evsel->forced_leader) ret += scnprintf(buf + ret, size - ret, " }"); return ret; } static void __evsel__config_callchain(struct evsel *evsel, struct record_opts *opts, struct callchain_param *param) { bool function = evsel__is_function_event(evsel); struct perf_event_attr *attr = &evsel->core.attr; evsel__set_sample_bit(evsel, CALLCHAIN); attr->sample_max_stack = param->max_stack; if (opts->kernel_callchains) attr->exclude_callchain_user = 1; if (opts->user_callchains) attr->exclude_callchain_kernel = 1; if (param->record_mode == CALLCHAIN_LBR) { if (!opts->branch_stack) { if (attr->exclude_user) { pr_warning("LBR callstack option is only available " "to get user callchain information. " "Falling back to framepointers.\n"); } else { evsel__set_sample_bit(evsel, BRANCH_STACK); attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER | PERF_SAMPLE_BRANCH_CALL_STACK | PERF_SAMPLE_BRANCH_NO_CYCLES | PERF_SAMPLE_BRANCH_NO_FLAGS | PERF_SAMPLE_BRANCH_HW_INDEX; } } else pr_warning("Cannot use LBR callstack with branch stack. " "Falling back to framepointers.\n"); } if (param->record_mode == CALLCHAIN_DWARF) { if (!function) { evsel__set_sample_bit(evsel, REGS_USER); evsel__set_sample_bit(evsel, STACK_USER); if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) { attr->sample_regs_user |= DWARF_MINIMAL_REGS; pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, " "specifying a subset with --user-regs may render DWARF unwinding unreliable, " "so the minimal registers set (IP, SP) is explicitly forced.\n"); } else { attr->sample_regs_user |= PERF_REGS_MASK; } attr->sample_stack_user = param->dump_size; attr->exclude_callchain_user = 1; } else { pr_info("Cannot use DWARF unwind for function trace event," " falling back to framepointers.\n"); } } if (function) { pr_info("Disabling user space callchains for function trace event.\n"); attr->exclude_callchain_user = 1; } } void evsel__config_callchain(struct evsel *evsel, struct record_opts *opts, struct callchain_param *param) { if (param->enabled) return __evsel__config_callchain(evsel, opts, param); } static void evsel__reset_callgraph(struct evsel *evsel, struct callchain_param *param) { struct perf_event_attr *attr = &evsel->core.attr; evsel__reset_sample_bit(evsel, CALLCHAIN); if (param->record_mode == CALLCHAIN_LBR) { evsel__reset_sample_bit(evsel, BRANCH_STACK); attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER | PERF_SAMPLE_BRANCH_CALL_STACK | PERF_SAMPLE_BRANCH_HW_INDEX); } if (param->record_mode == CALLCHAIN_DWARF) { evsel__reset_sample_bit(evsel, REGS_USER); evsel__reset_sample_bit(evsel, STACK_USER); } } static void evsel__apply_config_terms(struct evsel *evsel, struct record_opts *opts, bool track) { struct evsel_config_term *term; struct list_head *config_terms = &evsel->config_terms; struct perf_event_attr *attr = &evsel->core.attr; /* callgraph default */ struct callchain_param param = { .record_mode = callchain_param.record_mode, }; u32 dump_size = 0; int max_stack = 0; const char *callgraph_buf = NULL; list_for_each_entry(term, config_terms, list) { switch (term->type) { case EVSEL__CONFIG_TERM_PERIOD: if (!(term->weak && opts->user_interval != ULLONG_MAX)) { attr->sample_period = term->val.period; attr->freq = 0; evsel__reset_sample_bit(evsel, PERIOD); } break; case EVSEL__CONFIG_TERM_FREQ: if (!(term->weak && opts->user_freq != UINT_MAX)) { attr->sample_freq = term->val.freq; attr->freq = 1; evsel__set_sample_bit(evsel, PERIOD); } break; case EVSEL__CONFIG_TERM_TIME: if (term->val.time) evsel__set_sample_bit(evsel, TIME); else evsel__reset_sample_bit(evsel, TIME); break; case EVSEL__CONFIG_TERM_CALLGRAPH: callgraph_buf = term->val.str; break; case EVSEL__CONFIG_TERM_BRANCH: if (term->val.str && strcmp(term->val.str, "no")) { evsel__set_sample_bit(evsel, BRANCH_STACK); parse_branch_str(term->val.str, &attr->branch_sample_type); } else evsel__reset_sample_bit(evsel, BRANCH_STACK); break; case EVSEL__CONFIG_TERM_STACK_USER: dump_size = term->val.stack_user; break; case EVSEL__CONFIG_TERM_MAX_STACK: max_stack = term->val.max_stack; break; case EVSEL__CONFIG_TERM_MAX_EVENTS: evsel->max_events = term->val.max_events; break; case EVSEL__CONFIG_TERM_INHERIT: /* * attr->inherit should has already been set by * evsel__config. If user explicitly set * inherit using config terms, override global * opt->no_inherit setting. */ attr->inherit = term->val.inherit ? 1 : 0; break; case EVSEL__CONFIG_TERM_OVERWRITE: attr->write_backward = term->val.overwrite ? 1 : 0; break; case EVSEL__CONFIG_TERM_DRV_CFG: break; case EVSEL__CONFIG_TERM_PERCORE: break; case EVSEL__CONFIG_TERM_AUX_OUTPUT: attr->aux_output = term->val.aux_output ? 1 : 0; break; case EVSEL__CONFIG_TERM_AUX_SAMPLE_SIZE: /* Already applied by auxtrace */ break; case EVSEL__CONFIG_TERM_CFG_CHG: break; default: break; } } /* User explicitly set per-event callgraph, clear the old setting and reset. */ if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) { bool sample_address = false; if (max_stack) { param.max_stack = max_stack; if (callgraph_buf == NULL) callgraph_buf = "fp"; } /* parse callgraph parameters */ if (callgraph_buf != NULL) { if (!strcmp(callgraph_buf, "no")) { param.enabled = false; param.record_mode = CALLCHAIN_NONE; } else { param.enabled = true; if (parse_callchain_record(callgraph_buf, ¶m)) { pr_err("per-event callgraph setting for %s failed. " "Apply callgraph global setting for it\n", evsel->name); return; } if (param.record_mode == CALLCHAIN_DWARF) sample_address = true; } } if (dump_size > 0) { dump_size = round_up(dump_size, sizeof(u64)); param.dump_size = dump_size; } /* If global callgraph set, clear it */ if (callchain_param.enabled) evsel__reset_callgraph(evsel, &callchain_param); /* set perf-event callgraph */ if (param.enabled) { if (sample_address) { evsel__set_sample_bit(evsel, ADDR); evsel__set_sample_bit(evsel, DATA_SRC); evsel->core.attr.mmap_data = track; } evsel__config_callchain(evsel, opts, ¶m); } } } struct evsel_config_term *__evsel__get_config_term(struct evsel *evsel, enum evsel_term_type type) { struct evsel_config_term *term, *found_term = NULL; list_for_each_entry(term, &evsel->config_terms, list) { if (term->type == type) found_term = term; } return found_term; } void __weak arch_evsel__set_sample_weight(struct evsel *evsel) { evsel__set_sample_bit(evsel, WEIGHT); } /* * The enable_on_exec/disabled value strategy: * * 1) For any type of traced program: * - all independent events and group leaders are disabled * - all group members are enabled * * Group members are ruled by group leaders. They need to * be enabled, because the group scheduling relies on that. * * 2) For traced programs executed by perf: * - all independent events and group leaders have * enable_on_exec set * - we don't specifically enable or disable any event during * the record command * * Independent events and group leaders are initially disabled * and get enabled by exec. Group members are ruled by group * leaders as stated in 1). * * 3) For traced programs attached by perf (pid/tid): * - we specifically enable or disable all events during * the record command * * When attaching events to already running traced we * enable/disable events specifically, as there's no * initial traced exec call. */ void evsel__config(struct evsel *evsel, struct record_opts *opts, struct callchain_param *callchain) { struct evsel *leader = evsel__leader(evsel); struct perf_event_attr *attr = &evsel->core.attr; int track = evsel->tracking; bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread; attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1; attr->inherit = !opts->no_inherit; attr->write_backward = opts->overwrite ? 1 : 0; evsel__set_sample_bit(evsel, IP); evsel__set_sample_bit(evsel, TID); if (evsel->sample_read) { evsel__set_sample_bit(evsel, READ); /* * We need ID even in case of single event, because * PERF_SAMPLE_READ process ID specific data. */ evsel__set_sample_id(evsel, false); /* * Apply group format only if we belong to group * with more than one members. */ if (leader->core.nr_members > 1) { attr->read_format |= PERF_FORMAT_GROUP; attr->inherit = 0; } } /* * We default some events to have a default interval. But keep * it a weak assumption overridable by the user. */ if (!attr->sample_period) { if (opts->freq) { attr->freq = 1; attr->sample_freq = opts->freq; } else { attr->sample_period = opts->default_interval; } } /* * If attr->freq was set (here or earlier), ask for period * to be sampled. */ if (attr->freq) evsel__set_sample_bit(evsel, PERIOD); if (opts->no_samples) attr->sample_freq = 0; if (opts->inherit_stat) { evsel->core.attr.read_format |= PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING | PERF_FORMAT_ID; attr->inherit_stat = 1; } if (opts->sample_address) { evsel__set_sample_bit(evsel, ADDR); attr->mmap_data = track; } /* * We don't allow user space callchains for function trace * event, due to issues with page faults while tracing page * fault handler and its overall trickiness nature. */ if (evsel__is_function_event(evsel)) evsel->core.attr.exclude_callchain_user = 1; if (callchain && callchain->enabled && !evsel->no_aux_samples) evsel__config_callchain(evsel, opts, callchain); if (opts->sample_intr_regs && !evsel->no_aux_samples && !evsel__is_dummy_event(evsel)) { attr->sample_regs_intr = opts->sample_intr_regs; evsel__set_sample_bit(evsel, REGS_INTR); } if (opts->sample_user_regs && !evsel->no_aux_samples && !evsel__is_dummy_event(evsel)) { attr->sample_regs_user |= opts->sample_user_regs; evsel__set_sample_bit(evsel, REGS_USER); } if (target__has_cpu(&opts->target) || opts->sample_cpu) evsel__set_sample_bit(evsel, CPU); /* * When the user explicitly disabled time don't force it here. */ if (opts->sample_time && (!perf_missing_features.sample_id_all && (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu || opts->sample_time_set))) evsel__set_sample_bit(evsel, TIME); if (opts->raw_samples && !evsel->no_aux_samples) { evsel__set_sample_bit(evsel, TIME); evsel__set_sample_bit(evsel, RAW); evsel__set_sample_bit(evsel, CPU); } if (opts->sample_address) evsel__set_sample_bit(evsel, DATA_SRC); if (opts->sample_phys_addr) evsel__set_sample_bit(evsel, PHYS_ADDR); if (opts->no_buffering) { attr->watermark = 0; attr->wakeup_events = 1; } if (opts->branch_stack && !evsel->no_aux_samples) { evsel__set_sample_bit(evsel, BRANCH_STACK); attr->branch_sample_type = opts->branch_stack; } if (opts->sample_weight) arch_evsel__set_sample_weight(evsel); attr->task = track; attr->mmap = track; attr->mmap2 = track && !perf_missing_features.mmap2; attr->comm = track; attr->build_id = track && opts->build_id; /* * ksymbol is tracked separately with text poke because it needs to be * system wide and enabled immediately. */ if (!opts->text_poke) attr->ksymbol = track && !perf_missing_features.ksymbol; attr->bpf_event = track && !opts->no_bpf_event && !perf_missing_features.bpf; if (opts->record_namespaces) attr->namespaces = track; if (opts->record_cgroup) { attr->cgroup = track && !perf_missing_features.cgroup; evsel__set_sample_bit(evsel, CGROUP); } if (opts->sample_data_page_size) evsel__set_sample_bit(evsel, DATA_PAGE_SIZE); if (opts->sample_code_page_size) evsel__set_sample_bit(evsel, CODE_PAGE_SIZE); if (opts->record_switch_events) attr->context_switch = track; if (opts->sample_transaction) evsel__set_sample_bit(evsel, TRANSACTION); if (opts->running_time) { evsel->core.attr.read_format |= PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; } /* * XXX see the function comment above * * Disabling only independent events or group leaders, * keeping group members enabled. */ if (evsel__is_group_leader(evsel)) attr->disabled = 1; /* * Setting enable_on_exec for independent events and * group leaders for traced executed by perf. */ if (target__none(&opts->target) && evsel__is_group_leader(evsel) && !opts->initial_delay) attr->enable_on_exec = 1; if (evsel->immediate) { attr->disabled = 0; attr->enable_on_exec = 0; } clockid = opts->clockid; if (opts->use_clockid) { attr->use_clockid = 1; attr->clockid = opts->clockid; } if (evsel->precise_max) attr->precise_ip = 3; if (opts->all_user) { attr->exclude_kernel = 1; attr->exclude_user = 0; } if (opts->all_kernel) { attr->exclude_kernel = 0; attr->exclude_user = 1; } if (evsel->core.own_cpus || evsel->unit) evsel->core.attr.read_format |= PERF_FORMAT_ID; /* * Apply event specific term settings, * it overloads any global configuration. */ evsel__apply_config_terms(evsel, opts, track); evsel->ignore_missing_thread = opts->ignore_missing_thread; /* The --period option takes the precedence. */ if (opts->period_set) { if (opts->period) evsel__set_sample_bit(evsel, PERIOD); else evsel__reset_sample_bit(evsel, PERIOD); } /* * A dummy event never triggers any actual counter and therefore * cannot be used with branch_stack. * * For initial_delay, a dummy event is added implicitly. * The software event will trigger -EOPNOTSUPP error out, * if BRANCH_STACK bit is set. */ if (evsel__is_dummy_event(evsel)) evsel__reset_sample_bit(evsel, BRANCH_STACK); } int evsel__set_filter(struct evsel *evsel, const char *filter) { char *new_filter = strdup(filter); if (new_filter != NULL) { free(evsel->filter); evsel->filter = new_filter; return 0; } return -1; } static int evsel__append_filter(struct evsel *evsel, const char *fmt, const char *filter) { char *new_filter; if (evsel->filter == NULL) return evsel__set_filter(evsel, filter); if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) { free(evsel->filter); evsel->filter = new_filter; return 0; } return -1; } int evsel__append_tp_filter(struct evsel *evsel, const char *filter) { return evsel__append_filter(evsel, "(%s) && (%s)", filter); } int evsel__append_addr_filter(struct evsel *evsel, const char *filter) { return evsel__append_filter(evsel, "%s,%s", filter); } /* Caller has to clear disabled after going through all CPUs. */ int evsel__enable_cpu(struct evsel *evsel, int cpu) { return perf_evsel__enable_cpu(&evsel->core, cpu); } int evsel__enable(struct evsel *evsel) { int err = perf_evsel__enable(&evsel->core); if (!err) evsel->disabled = false; return err; } /* Caller has to set disabled after going through all CPUs. */ int evsel__disable_cpu(struct evsel *evsel, int cpu) { return perf_evsel__disable_cpu(&evsel->core, cpu); } int evsel__disable(struct evsel *evsel) { int err = perf_evsel__disable(&evsel->core); /* * We mark it disabled here so that tools that disable a event can * ignore events after they disable it. I.e. the ring buffer may have * already a few more events queued up before the kernel got the stop * request. */ if (!err) evsel->disabled = true; return err; } static void evsel__free_config_terms(struct evsel *evsel) { struct evsel_config_term *term, *h; list_for_each_entry_safe(term, h, &evsel->config_terms, list) { list_del_init(&term->list); if (term->free_str) zfree(&term->val.str); free(term); } } void evsel__exit(struct evsel *evsel) { assert(list_empty(&evsel->core.node)); assert(evsel->evlist == NULL); bpf_counter__destroy(evsel); evsel__free_counts(evsel); perf_evsel__free_fd(&evsel->core); perf_evsel__free_id(&evsel->core); evsel__free_config_terms(evsel); cgroup__put(evsel->cgrp); perf_cpu_map__put(evsel->core.cpus); perf_cpu_map__put(evsel->core.own_cpus); perf_thread_map__put(evsel->core.threads); zfree(&evsel->group_name); zfree(&evsel->name); zfree(&evsel->pmu_name); evsel__zero_per_pkg(evsel); hashmap__free(evsel->per_pkg_mask); evsel->per_pkg_mask = NULL; zfree(&evsel->metric_events); perf_evsel__object.fini(evsel); } void evsel__delete(struct evsel *evsel) { evsel__exit(evsel); free(evsel); } void evsel__compute_deltas(struct evsel *evsel, int cpu, int thread, struct perf_counts_values *count) { struct perf_counts_values tmp; if (!evsel->prev_raw_counts) return; if (cpu == -1) { tmp = evsel->prev_raw_counts->aggr; evsel->prev_raw_counts->aggr = *count; } else { tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread); *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count; } count->val = count->val - tmp.val; count->ena = count->ena - tmp.ena; count->run = count->run - tmp.run; } void perf_counts_values__scale(struct perf_counts_values *count, bool scale, s8 *pscaled) { s8 scaled = 0; if (scale) { if (count->run == 0) { scaled = -1; count->val = 0; } else if (count->run < count->ena) { scaled = 1; count->val = (u64)((double) count->val * count->ena / count->run); } } if (pscaled) *pscaled = scaled; } static int evsel__read_one(struct evsel *evsel, int cpu, int thread) { struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread); return perf_evsel__read(&evsel->core, cpu, thread, count); } static void evsel__set_count(struct evsel *counter, int cpu, int thread, u64 val, u64 ena, u64 run) { struct perf_counts_values *count; count = perf_counts(counter->counts, cpu, thread); count->val = val; count->ena = ena; count->run = run; perf_counts__set_loaded(counter->counts, cpu, thread, true); } static int evsel__process_group_data(struct evsel *leader, int cpu, int thread, u64 *data) { u64 read_format = leader->core.attr.read_format; struct sample_read_value *v; u64 nr, ena = 0, run = 0, i; nr = *data++; if (nr != (u64) leader->core.nr_members) return -EINVAL; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ena = *data++; if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) run = *data++; v = (struct sample_read_value *) data; evsel__set_count(leader, cpu, thread, v[0].value, ena, run); for (i = 1; i < nr; i++) { struct evsel *counter; counter = evlist__id2evsel(leader->evlist, v[i].id); if (!counter) return -EINVAL; evsel__set_count(counter, cpu, thread, v[i].value, ena, run); } return 0; } static int evsel__read_group(struct evsel *leader, int cpu, int thread) { struct perf_stat_evsel *ps = leader->stats; u64 read_format = leader->core.attr.read_format; int size = perf_evsel__read_size(&leader->core); u64 *data = ps->group_data; if (!(read_format & PERF_FORMAT_ID)) return -EINVAL; if (!evsel__is_group_leader(leader)) return -EINVAL; if (!data) { data = zalloc(size); if (!data) return -ENOMEM; ps->group_data = data; } if (FD(leader, cpu, thread) < 0) return -EINVAL; if (readn(FD(leader, cpu, thread), data, size) <= 0) return -errno; return evsel__process_group_data(leader, cpu, thread, data); } int evsel__read_counter(struct evsel *evsel, int cpu, int thread) { u64 read_format = evsel->core.attr.read_format; if (read_format & PERF_FORMAT_GROUP) return evsel__read_group(evsel, cpu, thread); return evsel__read_one(evsel, cpu, thread); } int __evsel__read_on_cpu(struct evsel *evsel, int cpu, int thread, bool scale) { struct perf_counts_values count; size_t nv = scale ? 3 : 1; if (FD(evsel, cpu, thread) < 0) return -EINVAL; if (evsel->counts == NULL && evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0) return -ENOMEM; if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0) return -errno; evsel__compute_deltas(evsel, cpu, thread, &count); perf_counts_values__scale(&count, scale, NULL); *perf_counts(evsel->counts, cpu, thread) = count; return 0; } static int evsel__match_other_cpu(struct evsel *evsel, struct evsel *other, int cpu) { int cpuid; cpuid = perf_cpu_map__cpu(evsel->core.cpus, cpu); return perf_cpu_map__idx(other->core.cpus, cpuid); } static int evsel__hybrid_group_cpu(struct evsel *evsel, int cpu) { struct evsel *leader = evsel__leader(evsel); if ((evsel__is_hybrid(evsel) && !evsel__is_hybrid(leader)) || (!evsel__is_hybrid(evsel) && evsel__is_hybrid(leader))) { return evsel__match_other_cpu(evsel, leader, cpu); } return cpu; } static int get_group_fd(struct evsel *evsel, int cpu, int thread) { struct evsel *leader = evsel__leader(evsel); int fd; if (evsel__is_group_leader(evsel)) return -1; /* * Leader must be already processed/open, * if not it's a bug. */ BUG_ON(!leader->core.fd); cpu = evsel__hybrid_group_cpu(evsel, cpu); if (cpu == -1) return -1; fd = FD(leader, cpu, thread); BUG_ON(fd == -1); return fd; } static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx) { for (int cpu = 0; cpu < nr_cpus; cpu++) for (int thread = thread_idx; thread < nr_threads - 1; thread++) FD(pos, cpu, thread) = FD(pos, cpu, thread + 1); } static int update_fds(struct evsel *evsel, int nr_cpus, int cpu_idx, int nr_threads, int thread_idx) { struct evsel *pos; if (cpu_idx >= nr_cpus || thread_idx >= nr_threads) return -EINVAL; evlist__for_each_entry(evsel->evlist, pos) { nr_cpus = pos != evsel ? nr_cpus : cpu_idx; evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx); /* * Since fds for next evsel has not been created, * there is no need to iterate whole event list. */ if (pos == evsel) break; } return 0; } bool evsel__ignore_missing_thread(struct evsel *evsel, int nr_cpus, int cpu, struct perf_thread_map *threads, int thread, int err) { pid_t ignore_pid = perf_thread_map__pid(threads, thread); if (!evsel->ignore_missing_thread) return false; /* The system wide setup does not work with threads. */ if (evsel->core.system_wide) return false; /* The -ESRCH is perf event syscall errno for pid's not found. */ if (err != -ESRCH) return false; /* If there's only one thread, let it fail. */ if (threads->nr == 1) return false; /* * We should remove fd for missing_thread first * because thread_map__remove() will decrease threads->nr. */ if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread)) return false; if (thread_map__remove(threads, thread)) return false; pr_warning("WARNING: Ignored open failure for pid %d\n", ignore_pid); return true; } static int __open_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv __maybe_unused) { return fprintf(fp, " %-32s %s\n", name, val); } static void display_attr(struct perf_event_attr *attr) { if (verbose >= 2 || debug_peo_args) { fprintf(stderr, "%.60s\n", graph_dotted_line); fprintf(stderr, "perf_event_attr:\n"); perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL); fprintf(stderr, "%.60s\n", graph_dotted_line); } } bool evsel__precise_ip_fallback(struct evsel *evsel) { /* Do not try less precise if not requested. */ if (!evsel->precise_max) return false; /* * We tried all the precise_ip values, and it's * still failing, so leave it to standard fallback. */ if (!evsel->core.attr.precise_ip) { evsel->core.attr.precise_ip = evsel->precise_ip_original; return false; } if (!evsel->precise_ip_original) evsel->precise_ip_original = evsel->core.attr.precise_ip; evsel->core.attr.precise_ip--; pr_debug2_peo("decreasing precise_ip by one (%d)\n", evsel->core.attr.precise_ip); display_attr(&evsel->core.attr); return true; } static struct perf_cpu_map *empty_cpu_map; static struct perf_thread_map *empty_thread_map; static int __evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus, struct perf_thread_map *threads) { int nthreads; if ((perf_missing_features.write_backward && evsel->core.attr.write_backward) || (perf_missing_features.aux_output && evsel->core.attr.aux_output)) return -EINVAL; if (cpus == NULL) { if (empty_cpu_map == NULL) { empty_cpu_map = perf_cpu_map__dummy_new(); if (empty_cpu_map == NULL) return -ENOMEM; } cpus = empty_cpu_map; } if (threads == NULL) { if (empty_thread_map == NULL) { empty_thread_map = thread_map__new_by_tid(-1); if (empty_thread_map == NULL) return -ENOMEM; } threads = empty_thread_map; } if (evsel->core.system_wide) nthreads = 1; else nthreads = threads->nr; if (evsel->core.fd == NULL && perf_evsel__alloc_fd(&evsel->core, cpus->nr, nthreads) < 0) return -ENOMEM; evsel->open_flags = PERF_FLAG_FD_CLOEXEC; if (evsel->cgrp) evsel->open_flags |= PERF_FLAG_PID_CGROUP; return 0; } static void evsel__disable_missing_features(struct evsel *evsel) { if (perf_missing_features.weight_struct) { evsel__set_sample_bit(evsel, WEIGHT); evsel__reset_sample_bit(evsel, WEIGHT_STRUCT); } if (perf_missing_features.clockid_wrong) evsel->core.attr.clockid = CLOCK_MONOTONIC; /* should always work */ if (perf_missing_features.clockid) { evsel->core.attr.use_clockid = 0; evsel->core.attr.clockid = 0; } if (perf_missing_features.cloexec) evsel->open_flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC; if (perf_missing_features.mmap2) evsel->core.attr.mmap2 = 0; if (perf_missing_features.exclude_guest) evsel->core.attr.exclude_guest = evsel->core.attr.exclude_host = 0; if (perf_missing_features.lbr_flags) evsel->core.attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS | PERF_SAMPLE_BRANCH_NO_CYCLES); if (perf_missing_features.group_read && evsel->core.attr.inherit) evsel->core.attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID); if (perf_missing_features.ksymbol) evsel->core.attr.ksymbol = 0; if (perf_missing_features.bpf) evsel->core.attr.bpf_event = 0; if (perf_missing_features.branch_hw_idx) evsel->core.attr.branch_sample_type &= ~PERF_SAMPLE_BRANCH_HW_INDEX; if (perf_missing_features.sample_id_all) evsel->core.attr.sample_id_all = 0; } int evsel__prepare_open(struct evsel *evsel, struct perf_cpu_map *cpus, struct perf_thread_map *threads) { int err; err = __evsel__prepare_open(evsel, cpus, threads); if (err) return err; evsel__disable_missing_features(evsel); return err; } bool evsel__detect_missing_features(struct evsel *evsel) { /* * Must probe features in the order they were added to the * perf_event_attr interface. */ if (!perf_missing_features.weight_struct && (evsel->core.attr.sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) { perf_missing_features.weight_struct = true; pr_debug2("switching off weight struct support\n"); return true; } else if (!perf_missing_features.code_page_size && (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)) { perf_missing_features.code_page_size = true; pr_debug2_peo("Kernel has no PERF_SAMPLE_CODE_PAGE_SIZE support, bailing out\n"); return false; } else if (!perf_missing_features.data_page_size && (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)) { perf_missing_features.data_page_size = true; pr_debug2_peo("Kernel has no PERF_SAMPLE_DATA_PAGE_SIZE support, bailing out\n"); return false; } else if (!perf_missing_features.cgroup && evsel->core.attr.cgroup) { perf_missing_features.cgroup = true; pr_debug2_peo("Kernel has no cgroup sampling support, bailing out\n"); return false; } else if (!perf_missing_features.branch_hw_idx && (evsel->core.attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX)) { perf_missing_features.branch_hw_idx = true; pr_debug2("switching off branch HW index support\n"); return true; } else if (!perf_missing_features.aux_output && evsel->core.attr.aux_output) { perf_missing_features.aux_output = true; pr_debug2_peo("Kernel has no attr.aux_output support, bailing out\n"); return false; } else if (!perf_missing_features.bpf && evsel->core.attr.bpf_event) { perf_missing_features.bpf = true; pr_debug2_peo("switching off bpf_event\n"); return true; } else if (!perf_missing_features.ksymbol && evsel->core.attr.ksymbol) { perf_missing_features.ksymbol = true; pr_debug2_peo("switching off ksymbol\n"); return true; } else if (!perf_missing_features.write_backward && evsel->core.attr.write_backward) { perf_missing_features.write_backward = true; pr_debug2_peo("switching off write_backward\n"); return false; } else if (!perf_missing_features.clockid_wrong && evsel->core.attr.use_clockid) { perf_missing_features.clockid_wrong = true; pr_debug2_peo("switching off clockid\n"); return true; } else if (!perf_missing_features.clockid && evsel->core.attr.use_clockid) { perf_missing_features.clockid = true; pr_debug2_peo("switching off use_clockid\n"); return true; } else if (!perf_missing_features.cloexec && (evsel->open_flags & PERF_FLAG_FD_CLOEXEC)) { perf_missing_features.cloexec = true; pr_debug2_peo("switching off cloexec flag\n"); return true; } else if (!perf_missing_features.mmap2 && evsel->core.attr.mmap2) { perf_missing_features.mmap2 = true; pr_debug2_peo("switching off mmap2\n"); return true; } else if (!perf_missing_features.exclude_guest && (evsel->core.attr.exclude_guest || evsel->core.attr.exclude_host)) { perf_missing_features.exclude_guest = true; pr_debug2_peo("switching off exclude_guest, exclude_host\n"); return true; } else if (!perf_missing_features.sample_id_all) { perf_missing_features.sample_id_all = true; pr_debug2_peo("switching off sample_id_all\n"); return true; } else if (!perf_missing_features.lbr_flags && (evsel->core.attr.branch_sample_type & (PERF_SAMPLE_BRANCH_NO_CYCLES | PERF_SAMPLE_BRANCH_NO_FLAGS))) { perf_missing_features.lbr_flags = true; pr_debug2_peo("switching off branch sample type no (cycles/flags)\n"); return true; } else if (!perf_missing_features.group_read && evsel->core.attr.inherit && (evsel->core.attr.read_format & PERF_FORMAT_GROUP) && evsel__is_group_leader(evsel)) { perf_missing_features.group_read = true; pr_debug2_peo("switching off group read\n"); return true; } else { return false; } } bool evsel__increase_rlimit(enum rlimit_action *set_rlimit) { int old_errno; struct rlimit l; if (*set_rlimit < INCREASED_MAX) { old_errno = errno; if (getrlimit(RLIMIT_NOFILE, &l) == 0) { if (*set_rlimit == NO_CHANGE) { l.rlim_cur = l.rlim_max; } else { l.rlim_cur = l.rlim_max + 1000; l.rlim_max = l.rlim_cur; } if (setrlimit(RLIMIT_NOFILE, &l) == 0) { (*set_rlimit) += 1; errno = old_errno; return true; } } errno = old_errno; } return false; } static int evsel__open_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, struct perf_thread_map *threads, int start_cpu, int end_cpu) { int cpu, thread, nthreads; int pid = -1, err, old_errno; enum rlimit_action set_rlimit = NO_CHANGE; err = __evsel__prepare_open(evsel, cpus, threads); if (err) return err; if (cpus == NULL) cpus = empty_cpu_map; if (threads == NULL) threads = empty_thread_map; if (evsel->core.system_wide) nthreads = 1; else nthreads = threads->nr; if (evsel->cgrp) pid = evsel->cgrp->fd; fallback_missing_features: evsel__disable_missing_features(evsel); display_attr(&evsel->core.attr); for (cpu = start_cpu; cpu < end_cpu; cpu++) { for (thread = 0; thread < nthreads; thread++) { int fd, group_fd; retry_open: if (thread >= nthreads) break; if (!evsel->cgrp && !evsel->core.system_wide) pid = perf_thread_map__pid(threads, thread); group_fd = get_group_fd(evsel, cpu, thread); test_attr__ready(); pr_debug2_peo("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx", pid, cpus->map[cpu], group_fd, evsel->open_flags); fd = sys_perf_event_open(&evsel->core.attr, pid, cpus->map[cpu], group_fd, evsel->open_flags); FD(evsel, cpu, thread) = fd; if (fd < 0) { err = -errno; pr_debug2_peo("\nsys_perf_event_open failed, error %d\n", err); goto try_fallback; } bpf_counter__install_pe(evsel, cpu, fd); if (unlikely(test_attr__enabled)) { test_attr__open(&evsel->core.attr, pid, cpus->map[cpu], fd, group_fd, evsel->open_flags); } pr_debug2_peo(" = %d\n", fd); if (evsel->bpf_fd >= 0) { int evt_fd = fd; int bpf_fd = evsel->bpf_fd; err = ioctl(evt_fd, PERF_EVENT_IOC_SET_BPF, bpf_fd); if (err && errno != EEXIST) { pr_err("failed to attach bpf fd %d: %s\n", bpf_fd, strerror(errno)); err = -EINVAL; goto out_close; } } set_rlimit = NO_CHANGE; /* * If we succeeded but had to kill clockid, fail and * have evsel__open_strerror() print us a nice error. */ if (perf_missing_features.clockid || perf_missing_features.clockid_wrong) { err = -EINVAL; goto out_close; } } } return 0; try_fallback: if (evsel__precise_ip_fallback(evsel)) goto retry_open; if (evsel__ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) { /* We just removed 1 thread, so lower the upper nthreads limit. */ nthreads--; /* ... and pretend like nothing have happened. */ err = 0; goto retry_open; } /* * perf stat needs between 5 and 22 fds per CPU. When we run out * of them try to increase the limits. */ if (err == -EMFILE && evsel__increase_rlimit(&set_rlimit)) goto retry_open; if (err != -EINVAL || cpu > 0 || thread > 0) goto out_close; if (evsel__detect_missing_features(evsel)) goto fallback_missing_features; out_close: if (err) threads->err_thread = thread; old_errno = errno; do { while (--thread >= 0) { if (FD(evsel, cpu, thread) >= 0) close(FD(evsel, cpu, thread)); FD(evsel, cpu, thread) = -1; } thread = nthreads; } while (--cpu >= 0); errno = old_errno; return err; } int evsel__open(struct evsel *evsel, struct perf_cpu_map *cpus, struct perf_thread_map *threads) { return evsel__open_cpu(evsel, cpus, threads, 0, cpus ? cpus->nr : 1); } void evsel__close(struct evsel *evsel) { perf_evsel__close(&evsel->core); perf_evsel__free_id(&evsel->core); } int evsel__open_per_cpu(struct evsel *evsel, struct perf_cpu_map *cpus, int cpu) { if (cpu == -1) return evsel__open_cpu(evsel, cpus, NULL, 0, cpus ? cpus->nr : 1); return evsel__open_cpu(evsel, cpus, NULL, cpu, cpu + 1); } int evsel__open_per_thread(struct evsel *evsel, struct perf_thread_map *threads) { return evsel__open(evsel, NULL, threads); } static int perf_evsel__parse_id_sample(const struct evsel *evsel, const union perf_event *event, struct perf_sample *sample) { u64 type = evsel->core.attr.sample_type; const __u64 *array = event->sample.array; bool swapped = evsel->needs_swap; union u64_swap u; array += ((event->header.size - sizeof(event->header)) / sizeof(u64)) - 1; if (type & PERF_SAMPLE_IDENTIFIER) { sample->id = *array; array--; } if (type & PERF_SAMPLE_CPU) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); } sample->cpu = u.val32[0]; array--; } if (type & PERF_SAMPLE_STREAM_ID) { sample->stream_id = *array; array--; } if (type & PERF_SAMPLE_ID) { sample->id = *array; array--; } if (type & PERF_SAMPLE_TIME) { sample->time = *array; array--; } if (type & PERF_SAMPLE_TID) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } sample->pid = u.val32[0]; sample->tid = u.val32[1]; array--; } return 0; } static inline bool overflow(const void *endp, u16 max_size, const void *offset, u64 size) { return size > max_size || offset + size > endp; } #define OVERFLOW_CHECK(offset, size, max_size) \ do { \ if (overflow(endp, (max_size), (offset), (size))) \ return -EFAULT; \ } while (0) #define OVERFLOW_CHECK_u64(offset) \ OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64)) static int perf_event__check_size(union perf_event *event, unsigned int sample_size) { /* * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to * check the format does not go past the end of the event. */ if (sample_size + sizeof(event->header) > event->header.size) return -EFAULT; return 0; } void __weak arch_perf_parse_sample_weight(struct perf_sample *data, const __u64 *array, u64 type __maybe_unused) { data->weight = *array; } int evsel__parse_sample(struct evsel *evsel, union perf_event *event, struct perf_sample *data) { u64 type = evsel->core.attr.sample_type; bool swapped = evsel->needs_swap; const __u64 *array; u16 max_size = event->header.size; const void *endp = (void *)event + max_size; u64 sz; /* * used for cross-endian analysis. See git commit 65014ab3 * for why this goofiness is needed. */ union u64_swap u; memset(data, 0, sizeof(*data)); data->cpu = data->pid = data->tid = -1; data->stream_id = data->id = data->time = -1ULL; data->period = evsel->core.attr.sample_period; data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; data->misc = event->header.misc; data->id = -1ULL; data->data_src = PERF_MEM_DATA_SRC_NONE; if (event->header.type != PERF_RECORD_SAMPLE) { if (!evsel->core.attr.sample_id_all) return 0; return perf_evsel__parse_id_sample(evsel, event, data); } array = event->sample.array; if (perf_event__check_size(event, evsel->sample_size)) return -EFAULT; if (type & PERF_SAMPLE_IDENTIFIER) { data->id = *array; array++; } if (type & PERF_SAMPLE_IP) { data->ip = *array; array++; } if (type & PERF_SAMPLE_TID) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } data->pid = u.val32[0]; data->tid = u.val32[1]; array++; } if (type & PERF_SAMPLE_TIME) { data->time = *array; array++; } if (type & PERF_SAMPLE_ADDR) { data->addr = *array; array++; } if (type & PERF_SAMPLE_ID) { data->id = *array; array++; } if (type & PERF_SAMPLE_STREAM_ID) { data->stream_id = *array; array++; } if (type & PERF_SAMPLE_CPU) { u.val64 = *array; if (swapped) { /* undo swap of u64, then swap on individual u32s */ u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); } data->cpu = u.val32[0]; array++; } if (type & PERF_SAMPLE_PERIOD) { data->period = *array; array++; } if (type & PERF_SAMPLE_READ) { u64 read_format = evsel->core.attr.read_format; OVERFLOW_CHECK_u64(array); if (read_format & PERF_FORMAT_GROUP) data->read.group.nr = *array; else data->read.one.value = *array; array++; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { OVERFLOW_CHECK_u64(array); data->read.time_enabled = *array; array++; } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { OVERFLOW_CHECK_u64(array); data->read.time_running = *array; array++; } /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */ if (read_format & PERF_FORMAT_GROUP) { const u64 max_group_nr = UINT64_MAX / sizeof(struct sample_read_value); if (data->read.group.nr > max_group_nr) return -EFAULT; sz = data->read.group.nr * sizeof(struct sample_read_value); OVERFLOW_CHECK(array, sz, max_size); data->read.group.values = (struct sample_read_value *)array; array = (void *)array + sz; } else { OVERFLOW_CHECK_u64(array); data->read.one.id = *array; array++; } } if (type & PERF_SAMPLE_CALLCHAIN) { const u64 max_callchain_nr = UINT64_MAX / sizeof(u64); OVERFLOW_CHECK_u64(array); data->callchain = (struct ip_callchain *)array++; if (data->callchain->nr > max_callchain_nr) return -EFAULT; sz = data->callchain->nr * sizeof(u64); OVERFLOW_CHECK(array, sz, max_size); array = (void *)array + sz; } if (type & PERF_SAMPLE_RAW) { OVERFLOW_CHECK_u64(array); u.val64 = *array; /* * Undo swap of u64, then swap on individual u32s, * get the size of the raw area and undo all of the * swap. The pevent interface handles endianness by * itself. */ if (swapped) { u.val64 = bswap_64(u.val64); u.val32[0] = bswap_32(u.val32[0]); u.val32[1] = bswap_32(u.val32[1]); } data->raw_size = u.val32[0]; /* * The raw data is aligned on 64bits including the * u32 size, so it's safe to use mem_bswap_64. */ if (swapped) mem_bswap_64((void *) array, data->raw_size); array = (void *)array + sizeof(u32); OVERFLOW_CHECK(array, data->raw_size, max_size); data->raw_data = (void *)array; array = (void *)array + data->raw_size; } if (type & PERF_SAMPLE_BRANCH_STACK) { const u64 max_branch_nr = UINT64_MAX / sizeof(struct branch_entry); OVERFLOW_CHECK_u64(array); data->branch_stack = (struct branch_stack *)array++; if (data->branch_stack->nr > max_branch_nr) return -EFAULT; sz = data->branch_stack->nr * sizeof(struct branch_entry); if (evsel__has_branch_hw_idx(evsel)) sz += sizeof(u64); else data->no_hw_idx = true; OVERFLOW_CHECK(array, sz, max_size); array = (void *)array + sz; } if (type & PERF_SAMPLE_REGS_USER) { OVERFLOW_CHECK_u64(array); data->user_regs.abi = *array; array++; if (data->user_regs.abi) { u64 mask = evsel->core.attr.sample_regs_user; sz = hweight64(mask) * sizeof(u64); OVERFLOW_CHECK(array, sz, max_size); data->user_regs.mask = mask; data->user_regs.regs = (u64 *)array; array = (void *)array + sz; } } if (type & PERF_SAMPLE_STACK_USER) { OVERFLOW_CHECK_u64(array); sz = *array++; data->user_stack.offset = ((char *)(array - 1) - (char *) event); if (!sz) { data->user_stack.size = 0; } else { OVERFLOW_CHECK(array, sz, max_size); data->user_stack.data = (char *)array; array = (void *)array + sz; OVERFLOW_CHECK_u64(array); data->user_stack.size = *array++; if (WARN_ONCE(data->user_stack.size > sz, "user stack dump failure\n")) return -EFAULT; } } if (type & PERF_SAMPLE_WEIGHT_TYPE) { OVERFLOW_CHECK_u64(array); arch_perf_parse_sample_weight(data, array, type); array++; } if (type & PERF_SAMPLE_DATA_SRC) { OVERFLOW_CHECK_u64(array); data->data_src = *array; array++; } if (type & PERF_SAMPLE_TRANSACTION) { OVERFLOW_CHECK_u64(array); data->transaction = *array; array++; } data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE; if (type & PERF_SAMPLE_REGS_INTR) { OVERFLOW_CHECK_u64(array); data->intr_regs.abi = *array; array++; if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) { u64 mask = evsel->core.attr.sample_regs_intr; sz = hweight64(mask) * sizeof(u64); OVERFLOW_CHECK(array, sz, max_size); data->intr_regs.mask = mask; data->intr_regs.regs = (u64 *)array; array = (void *)array + sz; } } data->phys_addr = 0; if (type & PERF_SAMPLE_PHYS_ADDR) { data->phys_addr = *array; array++; } data->cgroup = 0; if (type & PERF_SAMPLE_CGROUP) { data->cgroup = *array; array++; } data->data_page_size = 0; if (type & PERF_SAMPLE_DATA_PAGE_SIZE) { data->data_page_size = *array; array++; } data->code_page_size = 0; if (type & PERF_SAMPLE_CODE_PAGE_SIZE) { data->code_page_size = *array; array++; } if (type & PERF_SAMPLE_AUX) { OVERFLOW_CHECK_u64(array); sz = *array++; OVERFLOW_CHECK(array, sz, max_size); /* Undo swap of data */ if (swapped) mem_bswap_64((char *)array, sz); data->aux_sample.size = sz; data->aux_sample.data = (char *)array; array = (void *)array + sz; } return 0; } int evsel__parse_sample_timestamp(struct evsel *evsel, union perf_event *event, u64 *timestamp) { u64 type = evsel->core.attr.sample_type; const __u64 *array; if (!(type & PERF_SAMPLE_TIME)) return -1; if (event->header.type != PERF_RECORD_SAMPLE) { struct perf_sample data = { .time = -1ULL, }; if (!evsel->core.attr.sample_id_all) return -1; if (perf_evsel__parse_id_sample(evsel, event, &data)) return -1; *timestamp = data.time; return 0; } array = event->sample.array; if (perf_event__check_size(event, evsel->sample_size)) return -EFAULT; if (type & PERF_SAMPLE_IDENTIFIER) array++; if (type & PERF_SAMPLE_IP) array++; if (type & PERF_SAMPLE_TID) array++; if (type & PERF_SAMPLE_TIME) *timestamp = *array; return 0; } struct tep_format_field *evsel__field(struct evsel *evsel, const char *name) { return tep_find_field(evsel->tp_format, name); } void *evsel__rawptr(struct evsel *evsel, struct perf_sample *sample, const char *name) { struct tep_format_field *field = evsel__field(evsel, name); int offset; if (!field) return NULL; offset = field->offset; if (field->flags & TEP_FIELD_IS_DYNAMIC) { offset = *(int *)(sample->raw_data + field->offset); offset &= 0xffff; } return sample->raw_data + offset; } u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample, bool needs_swap) { u64 value; void *ptr = sample->raw_data + field->offset; switch (field->size) { case 1: return *(u8 *)ptr; case 2: value = *(u16 *)ptr; break; case 4: value = *(u32 *)ptr; break; case 8: memcpy(&value, ptr, sizeof(u64)); break; default: return 0; } if (!needs_swap) return value; switch (field->size) { case 2: return bswap_16(value); case 4: return bswap_32(value); case 8: return bswap_64(value); default: return 0; } return 0; } u64 evsel__intval(struct evsel *evsel, struct perf_sample *sample, const char *name) { struct tep_format_field *field = evsel__field(evsel, name); if (!field) return 0; return field ? format_field__intval(field, sample, evsel->needs_swap) : 0; } bool evsel__fallback(struct evsel *evsel, int err, char *msg, size_t msgsize) { int paranoid; if ((err == ENOENT || err == ENXIO || err == ENODEV) && evsel->core.attr.type == PERF_TYPE_HARDWARE && evsel->core.attr.config == PERF_COUNT_HW_CPU_CYCLES) { /* * If it's cycles then fall back to hrtimer based * cpu-clock-tick sw counter, which is always available even if * no PMU support. * * PPC returns ENXIO until 2.6.37 (behavior changed with commit * b0a873e). */ scnprintf(msg, msgsize, "%s", "The cycles event is not supported, trying to fall back to cpu-clock-ticks"); evsel->core.attr.type = PERF_TYPE_SOFTWARE; evsel->core.attr.config = PERF_COUNT_SW_CPU_CLOCK; zfree(&evsel->name); return true; } else if (err == EACCES && !evsel->core.attr.exclude_kernel && (paranoid = perf_event_paranoid()) > 1) { const char *name = evsel__name(evsel); char *new_name; const char *sep = ":"; /* If event has exclude user then don't exclude kernel. */ if (evsel->core.attr.exclude_user) return false; /* Is there already the separator in the name. */ if (strchr(name, '/') || (strchr(name, ':') && !evsel->is_libpfm_event)) sep = ""; if (asprintf(&new_name, "%s%su", name, sep) < 0) return false; if (evsel->name) free(evsel->name); evsel->name = new_name; scnprintf(msg, msgsize, "kernel.perf_event_paranoid=%d, trying " "to fall back to excluding kernel and hypervisor " " samples", paranoid); evsel->core.attr.exclude_kernel = 1; evsel->core.attr.exclude_hv = 1; return true; } return false; } static bool find_process(const char *name) { size_t len = strlen(name); DIR *dir; struct dirent *d; int ret = -1; dir = opendir(procfs__mountpoint()); if (!dir) return false; /* Walk through the directory. */ while (ret && (d = readdir(dir)) != NULL) { char path[PATH_MAX]; char *data; size_t size; if ((d->d_type != DT_DIR) || !strcmp(".", d->d_name) || !strcmp("..", d->d_name)) continue; scnprintf(path, sizeof(path), "%s/%s/comm", procfs__mountpoint(), d->d_name); if (filename__read_str(path, &data, &size)) continue; ret = strncmp(name, data, len); free(data); } closedir(dir); return ret ? false : true; } int evsel__open_strerror(struct evsel *evsel, struct target *target, int err, char *msg, size_t size) { char sbuf[STRERR_BUFSIZE]; int printed = 0, enforced = 0; switch (err) { case EPERM: case EACCES: printed += scnprintf(msg + printed, size - printed, "Access to performance monitoring and observability operations is limited.\n"); if (!sysfs__read_int("fs/selinux/enforce", &enforced)) { if (enforced) { printed += scnprintf(msg + printed, size - printed, "Enforced MAC policy settings (SELinux) can limit access to performance\n" "monitoring and observability operations. Inspect system audit records for\n" "more perf_event access control information and adjusting the policy.\n"); } } if (err == EPERM) printed += scnprintf(msg, size, "No permission to enable %s event.\n\n", evsel__name(evsel)); return scnprintf(msg + printed, size - printed, "Consider adjusting /proc/sys/kernel/perf_event_paranoid setting to open\n" "access to performance monitoring and observability operations for processes\n" "without CAP_PERFMON, CAP_SYS_PTRACE or CAP_SYS_ADMIN Linux capability.\n" "More information can be found at 'Perf events and tool security' document:\n" "https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html\n" "perf_event_paranoid setting is %d:\n" " -1: Allow use of (almost) all events by all users\n" " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n" ">= 0: Disallow raw and ftrace function tracepoint access\n" ">= 1: Disallow CPU event access\n" ">= 2: Disallow kernel profiling\n" "To make the adjusted perf_event_paranoid setting permanent preserve it\n" "in /etc/sysctl.conf (e.g. kernel.perf_event_paranoid = )", perf_event_paranoid()); case ENOENT: return scnprintf(msg, size, "The %s event is not supported.", evsel__name(evsel)); case EMFILE: return scnprintf(msg, size, "%s", "Too many events are opened.\n" "Probably the maximum number of open file descriptors has been reached.\n" "Hint: Try again after reducing the number of events.\n" "Hint: Try increasing the limit with 'ulimit -n '"); case ENOMEM: if (evsel__has_callchain(evsel) && access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0) return scnprintf(msg, size, "Not enough memory to setup event with callchain.\n" "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n" "Hint: Current value: %d", sysctl__max_stack()); break; case ENODEV: if (target->cpu_list) return scnprintf(msg, size, "%s", "No such device - did you specify an out-of-range profile CPU?"); break; case EOPNOTSUPP: if (evsel->core.attr.aux_output) return scnprintf(msg, size, "%s: PMU Hardware doesn't support 'aux_output' feature", evsel__name(evsel)); if (evsel->core.attr.sample_period != 0) return scnprintf(msg, size, "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'", evsel__name(evsel)); if (evsel->core.attr.precise_ip) return scnprintf(msg, size, "%s", "\'precise\' request may not be supported. Try removing 'p' modifier."); #if defined(__i386__) || defined(__x86_64__) if (evsel->core.attr.type == PERF_TYPE_HARDWARE) return scnprintf(msg, size, "%s", "No hardware sampling interrupt available.\n"); #endif break; case EBUSY: if (find_process("oprofiled")) return scnprintf(msg, size, "The PMU counters are busy/taken by another profiler.\n" "We found oprofile daemon running, please stop it and try again."); break; case EINVAL: if (evsel->core.attr.sample_type & PERF_SAMPLE_CODE_PAGE_SIZE && perf_missing_features.code_page_size) return scnprintf(msg, size, "Asking for the code page size isn't supported by this kernel."); if (evsel->core.attr.sample_type & PERF_SAMPLE_DATA_PAGE_SIZE && perf_missing_features.data_page_size) return scnprintf(msg, size, "Asking for the data page size isn't supported by this kernel."); if (evsel->core.attr.write_backward && perf_missing_features.write_backward) return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel."); if (perf_missing_features.clockid) return scnprintf(msg, size, "clockid feature not supported."); if (perf_missing_features.clockid_wrong) return scnprintf(msg, size, "wrong clockid (%d).", clockid); if (perf_missing_features.aux_output) return scnprintf(msg, size, "The 'aux_output' feature is not supported, update the kernel."); break; case ENODATA: return scnprintf(msg, size, "Cannot collect data source with the load latency event alone. " "Please add an auxiliary event in front of the load latency event."); default: break; } return scnprintf(msg, size, "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n" "/bin/dmesg | grep -i perf may provide additional information.\n", err, str_error_r(err, sbuf, sizeof(sbuf)), evsel__name(evsel)); } struct perf_env *evsel__env(struct evsel *evsel) { if (evsel && evsel->evlist) return evsel->evlist->env; return &perf_env; } static int store_evsel_ids(struct evsel *evsel, struct evlist *evlist) { int cpu, thread; for (cpu = 0; cpu < xyarray__max_x(evsel->core.fd); cpu++) { for (thread = 0; thread < xyarray__max_y(evsel->core.fd); thread++) { int fd = FD(evsel, cpu, thread); if (perf_evlist__id_add_fd(&evlist->core, &evsel->core, cpu, thread, fd) < 0) return -1; } } return 0; } int evsel__store_ids(struct evsel *evsel, struct evlist *evlist) { struct perf_cpu_map *cpus = evsel->core.cpus; struct perf_thread_map *threads = evsel->core.threads; if (perf_evsel__alloc_id(&evsel->core, cpus->nr, threads->nr)) return -ENOMEM; return store_evsel_ids(evsel, evlist); } void evsel__zero_per_pkg(struct evsel *evsel) { struct hashmap_entry *cur; size_t bkt; if (evsel->per_pkg_mask) { hashmap__for_each_entry(evsel->per_pkg_mask, cur, bkt) free((char *)cur->key); hashmap__clear(evsel->per_pkg_mask); } } bool evsel__is_hybrid(struct evsel *evsel) { return evsel->pmu_name && perf_pmu__is_hybrid(evsel->pmu_name); } struct evsel *evsel__leader(struct evsel *evsel) { return container_of(evsel->core.leader, struct evsel, core); } bool evsel__has_leader(struct evsel *evsel, struct evsel *leader) { return evsel->core.leader == &leader->core; } bool evsel__is_leader(struct evsel *evsel) { return evsel__has_leader(evsel, evsel); } void evsel__set_leader(struct evsel *evsel, struct evsel *leader) { evsel->core.leader = &leader->core; }