/* * mscan.c * * DESCRIPTION: * CAN bus driver for the alone generic (as possible as) MSCAN controller. * * AUTHOR: * Andrey Volkov * * COPYRIGHT: * 2005-2006, Varma Electronics Oy * * LICENCE: * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mscan.h" #define MSCAN_NORMAL_MODE 0 #define MSCAN_SLEEP_MODE MSCAN_SLPRQ #define MSCAN_INIT_MODE (MSCAN_INITRQ | MSCAN_SLPRQ) #define MSCAN_POWEROFF_MODE (MSCAN_CSWAI | MSCAN_SLPRQ) #define MSCAN_SET_MODE_RETRIES 255 #define BTR0_BRP_MASK 0x3f #define BTR0_SJW_SHIFT 6 #define BTR0_SJW_MASK (0x3 << BTR0_SJW_SHIFT) #define BTR1_TSEG1_MASK 0xf #define BTR1_TSEG2_SHIFT 4 #define BTR1_TSEG2_MASK (0x7 << BTR1_TSEG2_SHIFT) #define BTR1_SAM_SHIFT 7 #define BTR0_SET_BRP(brp) (((brp) - 1) & BTR0_BRP_MASK) #define BTR0_SET_SJW(sjw) ((((sjw) - 1) << BTR0_SJW_SHIFT) & \ BTR0_SJW_MASK) #define BTR1_SET_TSEG1(tseg1) (((tseg1) - 1) & BTR1_TSEG1_MASK) #define BTR1_SET_TSEG2(tseg2) ((((tseg2) - 1) << BTR1_TSEG2_SHIFT) & \ BTR1_TSEG2_MASK) #define BTR1_SET_SAM(sam) (((sam) & 1) << BTR1_SAM_SHIFT) static struct can_bittiming_const mscan_bittiming_const = { .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, }; struct mscan_state { u8 mode; u8 canrier; u8 cantier; }; #define TX_QUEUE_SIZE 3 struct tx_queue_entry { struct list_head list; u8 mask; u8 id; }; struct mscan_priv { struct can_priv can; long open_time; volatile unsigned long flags; u8 shadow_statflg; u8 shadow_canrier; u8 cur_pri; u8 tx_active; struct list_head tx_head; struct tx_queue_entry tx_queue[TX_QUEUE_SIZE]; struct napi_struct napi; struct net_device *dev; }; #define F_RX_PROGRESS 0 #define F_TX_PROGRESS 1 #define F_TX_WAIT_ALL 2 static enum can_state state_map[] = { CAN_STATE_ACTIVE, CAN_STATE_BUS_WARNING, CAN_STATE_BUS_PASSIVE, CAN_STATE_BUS_OFF }; static int mscan_set_mode(struct net_device *dev, u8 mode) { struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; struct mscan_priv *priv = netdev_priv(dev); int ret = 0; int i; u8 canctl1; if (mode != MSCAN_NORMAL_MODE) { if (priv->tx_active) { /* Abort transfers before going to sleep */ out_8(®s->cantier, 0); out_8(®s->cantarq, priv->tx_active); out_8(®s->cantier, priv->tx_active); } canctl1 = in_8(®s->canctl1); if ((mode & MSCAN_SLPRQ) && (canctl1 & MSCAN_SLPAK) == 0) { out_8(®s->canctl0, in_8(®s->canctl0) | MSCAN_SLPRQ); for (i = 0; i < MSCAN_SET_MODE_RETRIES; i++) { if (in_8(®s->canctl1) & MSCAN_SLPAK) break; udelay(100); } if (i >= MSCAN_SET_MODE_RETRIES) ret = -ENODEV; } if (!ret) priv->can.state = CAN_STATE_SLEEPING; if (!ret && (mode & MSCAN_INITRQ) && (canctl1 & MSCAN_INITAK) == 0) { out_8(®s->canctl0, in_8(®s->canctl0) | MSCAN_INITRQ); for (i = 0; i < MSCAN_SET_MODE_RETRIES; i++) { if (in_8(®s->canctl1) & MSCAN_INITAK) break; } if (i >= MSCAN_SET_MODE_RETRIES) ret = -ENODEV; } if (!ret) priv->can.state = CAN_STATE_STOPPED; if (!ret && (mode & MSCAN_CSWAI)) out_8(®s->canctl0, in_8(®s->canctl0) | MSCAN_CSWAI); } else { canctl1 = in_8(®s->canctl1); if (canctl1 & (MSCAN_SLPAK | MSCAN_INITAK)) { out_8(®s->canctl0, in_8(®s->canctl0) & ~(MSCAN_SLPRQ | MSCAN_INITRQ)); for (i = 0; i < MSCAN_SET_MODE_RETRIES; i++) { canctl1 = in_8(®s->canctl1); if (!(canctl1 & (MSCAN_INITAK | MSCAN_SLPAK))) break; } if (i >= MSCAN_SET_MODE_RETRIES) ret = -ENODEV; else priv->can.state = CAN_STATE_ACTIVE; } } return ret; } static int mscan_start(struct net_device *dev) { struct mscan_priv *priv = netdev_priv(dev); struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; u8 canrflg; int err; out_8(®s->canrier, 0); INIT_LIST_HEAD(&priv->tx_head); priv->cur_pri = 0; priv->tx_active = 0; priv->shadow_canrier = 0; priv->flags = 0; err = mscan_set_mode(dev, MSCAN_NORMAL_MODE); if (err) return err; canrflg = in_8(®s->canrflg); priv->shadow_statflg = canrflg & MSCAN_STAT_MSK; priv->can.state = state_map[max(MSCAN_STATE_RX(canrflg), MSCAN_STATE_TX(canrflg))]; out_8(®s->cantier, 0); /* Enable receive interrupts. */ out_8(®s->canrier, MSCAN_OVRIE | MSCAN_RXFIE | MSCAN_CSCIE | MSCAN_RSTATE1 | MSCAN_RSTATE0 | MSCAN_TSTATE1 | MSCAN_TSTATE0); return 0; } static int mscan_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct can_frame *frame = (struct can_frame *)skb->data; struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; struct mscan_priv *priv = netdev_priv(dev); int i, rtr, buf_id; u32 can_id; if (frame->can_dlc > 8) return -EINVAL; dev_dbg(ND2D(dev), "%s\n", __func__); out_8(®s->cantier, 0); i = ~priv->tx_active & MSCAN_TXE; buf_id = ffs(i) - 1; switch (hweight8(i)) { case 0: netif_stop_queue(dev); dev_err(ND2D(dev), "BUG! Tx Ring full when queue awake!\n"); return NETDEV_TX_BUSY; case 1: /* if buf_id < 3, then current frame will be send out of order, since buffer with lower id have higher priority (hell..) */ if (buf_id < 3) priv->cur_pri++; if (priv->cur_pri == 0xff) set_bit(F_TX_WAIT_ALL, &priv->flags); netif_stop_queue(dev); case 2: set_bit(F_TX_PROGRESS, &priv->flags); } out_8(®s->cantbsel, i); rtr = frame->can_id & CAN_RTR_FLAG; if (frame->can_id & CAN_EFF_FLAG) { dev_dbg(ND2D(dev), "sending extended frame\n"); can_id = (frame->can_id & CAN_EFF_MASK) << 1; if (rtr) can_id |= 1; out_be16(®s->tx.idr3_2, can_id); can_id >>= 16; can_id = (can_id & 0x7) | ((can_id << 2) & 0xffe0) | (3 << 3); } else { dev_dbg(ND2D(dev), "sending standard frame\n"); can_id = (frame->can_id & CAN_SFF_MASK) << 5; if (rtr) can_id |= 1 << 4; } out_be16(®s->tx.idr1_0, can_id); if (!rtr) { volatile void __iomem *data = ®s->tx.dsr1_0; u16 *payload = (u16 *) frame->data; /*Its safe to write into dsr[dlc+1] */ for (i = 0; i < (frame->can_dlc + 1) / 2; i++) { out_be16(data, *payload++); data += 2 + _MSCAN_RESERVED_DSR_SIZE; } } out_8(®s->tx.dlr, frame->can_dlc); out_8(®s->tx.tbpr, priv->cur_pri); /* Start transmission. */ out_8(®s->cantflg, 1 << buf_id); if (!test_bit(F_TX_PROGRESS, &priv->flags)) dev->trans_start = jiffies; list_add_tail(&priv->tx_queue[buf_id].list, &priv->tx_head); can_put_echo_skb(skb, dev, buf_id); /* Enable interrupt. */ priv->tx_active |= 1 << buf_id; out_8(®s->cantier, priv->tx_active); return NETDEV_TX_OK; } static inline int check_set_state(struct net_device *dev, u8 canrflg) { struct mscan_priv *priv = netdev_priv(dev); enum can_state state; int ret = 0; if (!(canrflg & MSCAN_CSCIF) || priv->can.state > CAN_STATE_BUS_OFF) return 0; state = state_map[max(MSCAN_STATE_RX(canrflg), MSCAN_STATE_TX(canrflg))]; if (priv->can.state < state) ret = 1; if (state == CAN_STATE_BUS_OFF) can_bus_off(dev); priv->can.state = state; return ret; } static int mscan_rx_poll(struct napi_struct *napi, int quota) { struct mscan_priv *priv = container_of(napi, struct mscan_priv, napi); struct net_device *dev = priv->dev; struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; struct net_device_stats *stats = dev->get_stats(dev); int npackets = 0; int ret = 1; struct sk_buff *skb; struct can_frame *frame; u32 can_id; u8 canrflg; int i; while (npackets < quota && ((canrflg = in_8(®s->canrflg)) & (MSCAN_RXF | MSCAN_ERR_IF))) { skb = dev_alloc_skb(sizeof(struct can_frame)); if (!skb) { if (printk_ratelimit()) dev_notice(ND2D(dev), "packet dropped\n"); stats->rx_dropped++; out_8(®s->canrflg, canrflg); continue; } frame = (struct can_frame *)skb_put(skb, sizeof(*frame)); memset(frame, 0, sizeof(*frame)); if (canrflg & MSCAN_RXF) { can_id = in_be16(®s->rx.idr1_0); if (can_id & (1 << 3)) { frame->can_id = CAN_EFF_FLAG; can_id = ((can_id << 16) | in_be16(®s->rx.idr3_2)); can_id = ((can_id & 0xffe00000) | ((can_id & 0x7ffff) << 2)) >> 2; } else { can_id >>= 4; frame->can_id = 0; } frame->can_id |= can_id >> 1; if (can_id & 1) frame->can_id |= CAN_RTR_FLAG; frame->can_dlc = in_8(®s->rx.dlr) & 0xf; if (!(frame->can_id & CAN_RTR_FLAG)) { volatile void __iomem *data = ®s->rx.dsr1_0; u16 *payload = (u16 *) frame->data; for (i = 0; i < (frame->can_dlc + 1) / 2; i++) { *payload++ = in_be16(data); data += 2 + _MSCAN_RESERVED_DSR_SIZE; } } dev_dbg(ND2D(dev), "received pkt: id: %u dlc: %u data: ", frame->can_id, frame->can_dlc); #ifdef DEBUG for (i = 0; i < frame->can_dlc && !(frame->can_id & CAN_FLAG_RTR); i++) printk(KERN_DEBUG "%2x ", frame->data[i]); printk(KERN_DEBUG "\n"); #endif out_8(®s->canrflg, MSCAN_RXF); dev->last_rx = jiffies; stats->rx_packets++; stats->rx_bytes += frame->can_dlc; } else if (canrflg & MSCAN_ERR_IF) { frame->can_id = CAN_ERR_FLAG; if (canrflg & MSCAN_OVRIF) { frame->can_id |= CAN_ERR_CRTL; frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; stats->rx_over_errors++; } else frame->data[1] = 0; if (check_set_state(dev, canrflg)) { frame->can_id |= CAN_ERR_CRTL; switch (priv->can.state) { case CAN_STATE_BUS_WARNING: if ((priv->shadow_statflg & MSCAN_RSTAT_MSK) < (canrflg & MSCAN_RSTAT_MSK)) frame->data[1] |= CAN_ERR_CRTL_RX_WARNING; if ((priv->shadow_statflg & MSCAN_TSTAT_MSK) < (canrflg & MSCAN_TSTAT_MSK)) frame->data[1] |= CAN_ERR_CRTL_TX_WARNING; break; case CAN_STATE_BUS_PASSIVE: frame->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; break; case CAN_STATE_BUS_OFF: frame->can_id |= CAN_ERR_BUSOFF; frame->can_id &= ~CAN_ERR_CRTL; break; default: break; } } priv->shadow_statflg = canrflg & MSCAN_STAT_MSK; frame->can_dlc = CAN_ERR_DLC; out_8(®s->canrflg, MSCAN_ERR_IF); } npackets++; skb->dev = dev; skb->protocol = __constant_htons(ETH_P_CAN); skb->ip_summed = CHECKSUM_UNNECESSARY; netif_receive_skb(skb); } if (!(in_8(®s->canrflg) & (MSCAN_RXF | MSCAN_ERR_IF))) { netif_rx_complete(dev, &priv->napi); clear_bit(F_RX_PROGRESS, &priv->flags); #if 0 out_8(®s->canrier, in_8(®s->canrier) | MSCAN_ERR_IF | MSCAN_RXFIE); #else if (priv->can.state < CAN_STATE_BUS_OFF) out_8(®s->canrier, priv->shadow_canrier); #endif ret = 0; } return ret; } static irqreturn_t mscan_isr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct mscan_priv *priv = netdev_priv(dev); struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; struct net_device_stats *stats = dev->get_stats(dev); u8 cantier, cantflg, canrflg; irqreturn_t ret = IRQ_NONE; cantier = in_8(®s->cantier) & MSCAN_TXE; cantflg = in_8(®s->cantflg) & cantier; if (cantier && cantflg) { struct list_head *tmp, *pos; list_for_each_safe(pos, tmp, &priv->tx_head) { struct tx_queue_entry *entry = list_entry(pos, struct tx_queue_entry, list); u8 mask = entry->mask; if (!(cantflg & mask)) continue; out_8(®s->cantbsel, mask); stats->tx_bytes += in_8(®s->tx.dlr); stats->tx_packets++; can_get_echo_skb(dev, entry->id); priv->tx_active &= ~mask; list_del(pos); } if (list_empty(&priv->tx_head)) { clear_bit(F_TX_WAIT_ALL, &priv->flags); clear_bit(F_TX_PROGRESS, &priv->flags); priv->cur_pri = 0; } else dev->trans_start = jiffies; if (!test_bit(F_TX_WAIT_ALL, &priv->flags)) netif_wake_queue(dev); out_8(®s->cantier, priv->tx_active); ret = IRQ_HANDLED; } canrflg = in_8(®s->canrflg); if ((canrflg & ~MSCAN_STAT_MSK) && !test_and_set_bit(F_RX_PROGRESS, &priv->flags)) { #if 0 printk(KERN_DEBUG "%s: canrflg=%#02x canrier=%#02x\n", dev->name, canrflg, in_8(®s->canrier)); #endif #if 0 if (check_set_state(dev, canrflg)) { out_8(®s->canrflg, MSCAN_CSCIF); ret = IRQ_HANDLED; } #endif if (canrflg & ~MSCAN_STAT_MSK) { priv->shadow_canrier = in_8(®s->canrier); out_8(®s->canrier, 0); netif_rx_schedule(dev, &priv->napi); ret = IRQ_HANDLED; } else clear_bit(F_RX_PROGRESS, &priv->flags); } return ret; } static int mscan_do_set_mode(struct net_device *dev, enum can_mode mode) { struct mscan_priv *priv = netdev_priv(dev); int ret = 0; if (!priv->open_time) return -EINVAL; switch (mode) { case CAN_MODE_SLEEP: case CAN_MODE_STOP: netif_stop_queue(dev); mscan_set_mode(dev, (mode == CAN_MODE_STOP) ? MSCAN_INIT_MODE : MSCAN_SLEEP_MODE); break; case CAN_MODE_START: if (priv->can.state <= CAN_STATE_BUS_OFF) mscan_set_mode(dev, MSCAN_INIT_MODE); ret = mscan_start(dev); if (ret) break; if (netif_queue_stopped(dev)) netif_wake_queue(dev); break; default: ret = -EOPNOTSUPP; break; } return ret; } static int mscan_do_set_bittiming(struct net_device *dev) { struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; struct mscan_priv *priv = netdev_priv(dev); struct can_bittiming *bt = &priv->can.bittiming; u8 btr0, btr1; btr0 = BTR0_SET_BRP(bt->brp) | BTR0_SET_SJW(bt->sjw); btr1 = (BTR1_SET_TSEG1(bt->prop_seg + bt->phase_seg1) | BTR1_SET_TSEG2(bt->phase_seg2) | BTR1_SET_SAM(priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)); dev_info(ND2D(dev), "BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1); out_8(®s->canbtr0, btr0); out_8(®s->canbtr1, btr1); return 0; } static int mscan_open(struct net_device *dev) { int ret; struct mscan_priv *priv = netdev_priv(dev); struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; /* determine and set bittime */ ret = can_set_bittiming(dev); if (ret) return ret; napi_enable(&priv->napi); ret = request_irq(dev->irq, mscan_isr, IRQF_SHARED, dev->name, dev); if (ret < 0) { napi_disable(&priv->napi); printk(KERN_ERR "%s - failed to attach interrupt\n", dev->name); return ret; } priv->open_time = jiffies; out_8(®s->canctl1, in_8(®s->canctl1) & ~MSCAN_LISTEN); ret = mscan_start(dev); if (ret) return ret; netif_start_queue(dev); return 0; } static int mscan_close(struct net_device *dev) { struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; struct mscan_priv *priv = netdev_priv(dev); napi_disable(&priv->napi); out_8(®s->cantier, 0); out_8(®s->canrier, 0); free_irq(dev->irq, dev); mscan_set_mode(dev, MSCAN_INIT_MODE); can_close_cleanup(dev); netif_stop_queue(dev); priv->open_time = 0; return 0; } int register_mscandev(struct net_device *dev, int clock_src) { struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; u8 ctl1; ctl1 = in_8(®s->canctl1); if (clock_src) ctl1 |= MSCAN_CLKSRC; else ctl1 &= ~MSCAN_CLKSRC; ctl1 |= MSCAN_CANE; out_8(®s->canctl1, ctl1); udelay(100); /* acceptance mask/acceptance code (accept everything) */ out_be16(®s->canidar1_0, 0); out_be16(®s->canidar3_2, 0); out_be16(®s->canidar5_4, 0); out_be16(®s->canidar7_6, 0); out_be16(®s->canidmr1_0, 0xffff); out_be16(®s->canidmr3_2, 0xffff); out_be16(®s->canidmr5_4, 0xffff); out_be16(®s->canidmr7_6, 0xffff); /* Two 32 bit Acceptance Filters */ out_8(®s->canidac, MSCAN_AF_32BIT); mscan_set_mode(dev, MSCAN_INIT_MODE); return register_netdev(dev); } EXPORT_SYMBOL(register_mscandev); void unregister_mscandev(struct net_device *dev) { struct mscan_regs *regs = (struct mscan_regs *)dev->base_addr; mscan_set_mode(dev, MSCAN_INIT_MODE); out_8(®s->canctl1, in_8(®s->canctl1) & ~MSCAN_CANE); unregister_netdev(dev); } EXPORT_SYMBOL(unregister_mscandev); struct net_device *alloc_mscandev(void) { struct net_device *dev; struct mscan_priv *priv; int i; dev = alloc_candev(sizeof(struct mscan_priv)); if (!dev) return NULL; priv = netdev_priv(dev); dev->open = mscan_open; dev->stop = mscan_close; dev->hard_start_xmit = mscan_hard_start_xmit; dev->flags |= IFF_ECHO; /* we support local echo */ priv->dev = dev; netif_napi_add(dev, &priv->napi, mscan_rx_poll, 8); priv->can.bittiming_const = &mscan_bittiming_const; priv->can.do_set_bittiming = mscan_do_set_bittiming; priv->can.do_set_mode = mscan_do_set_mode; for (i = 0; i < TX_QUEUE_SIZE; i++) { priv->tx_queue[i].id = i; priv->tx_queue[i].mask = 1 << i; } return dev; } EXPORT_SYMBOL(alloc_mscandev); MODULE_AUTHOR("Andrey Volkov "); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("CAN port driver for a mscan based chips");