/* * of.c - basic devicetree functions * * Copyright (c) 2012 Sascha Hauer , Pengutronix * * based on Linux devicetree support * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int is_printable_string(const void *data, int len) { const char *s = data; /* zero length is not */ if (len == 0) return 0; /* must terminate with zero */ if (s[len - 1] != '\0') return 0; /* printable or a null byte (concatenated strings) */ while (((*s == '\0') || isprint(*s)) && (len > 0)) { /* * If we see a null, there are three possibilities: * 1) If len == 1, it is the end of the string, printable * 2) Next character also a null, not printable. * 3) Next character not a null, continue to check. */ if (s[0] == '\0') { if (len == 1) return 1; if (s[1] == '\0') return 0; } s++; len--; } /* Not the null termination, or not done yet: not printable */ if (*s != '\0' || (len != 0)) return 0; return 1; } /* * Print the property in the best format, a heuristic guess. Print as * a string, concatenated strings, a byte, word, double word, or (if all * else fails) it is printed as a stream of bytes. */ void of_print_property(const void *data, int len) { int j; /* no data, don't print */ if (len == 0) return; /* * It is a string, but it may have multiple strings (embedded '\0's). */ if (is_printable_string(data, len)) { printf("\""); j = 0; while (j < len) { if (j > 0) printf("\", \""); printf("%s", data); j += strlen(data) + 1; data += strlen(data) + 1; } printf("\""); return; } if ((len % 4) == 0) { const uint32_t *p; printf("<"); for (j = 0, p = data; j < len/4; j ++) printf("0x%x%s", __be32_to_cpu(p[j]), j < (len/4 - 1) ? " " : ""); printf(">"); } else { /* anything else... hexdump */ const uint8_t *s; printf("["); for (j = 0, s = data; j < len; j++) printf("%02x%s", s[j], j < len - 1 ? " " : ""); printf("]"); } } /* * Iterate over all nodes of a tree. As a devicetree does not * have a dedicated list head, the start node (usually the root * node) will not be iterated over. */ static inline struct device_node *of_next_node(struct device_node *node) { struct device_node *next; next = list_first_entry(&node->list, struct device_node, list); return next->parent ? next : NULL; } #define of_tree_for_each_node_from(node, from) \ for (node = of_next_node(from); node; node = of_next_node(node)) /** * struct alias_prop - Alias property in 'aliases' node * @link: List node to link the structure in aliases_lookup list * @alias: Alias property name * @np: Pointer to device_node that the alias stands for * @id: Index value from end of alias name * @stem: Alias string without the index * * The structure represents one alias property of 'aliases' node as * an entry in aliases_lookup list. */ struct alias_prop { struct list_head link; const char *alias; struct device_node *np; int id; char stem[0]; }; static LIST_HEAD(aliases_lookup); struct device_node *root_node; struct device_node *of_aliases; #define OF_ROOT_NODE_SIZE_CELLS_DEFAULT 1 #define OF_ROOT_NODE_ADDR_CELLS_DEFAULT 1 int of_n_addr_cells(struct device_node *np) { const __be32 *ip; do { if (np->parent) np = np->parent; ip = of_get_property(np, "#address-cells", NULL); if (ip) return __be32_to_cpup(ip); } while (np->parent); /* No #address-cells property for the root node */ return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; } int of_n_size_cells(struct device_node *np) { const __be32 *ip; do { if (np->parent) np = np->parent; ip = of_get_property(np, "#size-cells", NULL); if (ip) return __be32_to_cpup(ip); } while (np->parent); /* No #size-cells property for the root node */ return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; } struct property *of_find_property(const struct device_node *np, const char *name, int *lenp) { struct property *pp; if (!np) return NULL; list_for_each_entry(pp, &np->properties, list) if (of_prop_cmp(pp->name, name) == 0) { if (lenp) *lenp = pp->length; return pp; } return NULL; } static void of_alias_add(struct alias_prop *ap, struct device_node *np, int id, const char *stem, int stem_len) { ap->np = np; ap->id = id; strncpy(ap->stem, stem, stem_len); ap->stem[stem_len] = 0; list_add_tail(&ap->link, &aliases_lookup); pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", ap->alias, ap->stem, ap->id, np->full_name); } /** * of_alias_scan - Scan all properties of 'aliases' node * * The function scans all the properties of 'aliases' node and populates * the global lookup table with the properties. It returns the * number of alias_prop found, or error code in error case. */ void of_alias_scan(void) { struct property *pp; struct alias_prop *app, *tmp; list_for_each_entry_safe(app, tmp, &aliases_lookup, link) free(app); INIT_LIST_HEAD(&aliases_lookup); if (!root_node) return; of_aliases = of_find_node_by_path("/aliases"); if (!of_aliases) return; list_for_each_entry(pp, &of_aliases->properties, list) { const char *start = pp->name; const char *end = start + strlen(start); struct device_node *np; struct alias_prop *ap; int id, len; /* Skip those we do not want to proceed */ if (!of_prop_cmp(pp->name, "name") || !of_prop_cmp(pp->name, "phandle") || !of_prop_cmp(pp->name, "linux,phandle")) continue; np = of_find_node_by_path(pp->value); if (!np) continue; /* walk the alias backwards to extract the id and work out * the 'stem' string */ while (isdigit(*(end-1)) && end > start) end--; len = end - start; id = strtol(end, 0, 10); if (id < 0) continue; /* Allocate an alias_prop with enough space for the stem */ ap = xzalloc(sizeof(*ap) + len + 1); if (!ap) continue; ap->alias = start; of_alias_add(ap, np, id, start, len); } } /** * of_alias_get_id - Get alias id for the given device_node * @np: Pointer to the given device_node * @stem: Alias stem of the given device_node * * The function travels the lookup table to get alias id for the given * device_node and alias stem. It returns the alias id if find it. */ int of_alias_get_id(struct device_node *np, const char *stem) { struct alias_prop *app; int id = -ENODEV; list_for_each_entry(app, &aliases_lookup, link) { if (of_node_cmp(app->stem, stem) != 0) continue; if (np == app->np) { id = app->id; break; } } return id; } const char *of_alias_get(struct device_node *np) { struct property *pp; list_for_each_entry(pp, &of_aliases->properties, list) { if (!of_node_cmp(np->full_name, pp->value)) return pp->name; } return NULL; } /* * of_find_node_by_alias - Find a node given an alias name * @root: the root node of the tree. If NULL, use internal tree * @alias: the alias name to find */ struct device_node *of_find_node_by_alias(struct device_node *root, const char *alias) { struct device_node *aliasnp; int ret; const char *path; if (!root) root = root_node; aliasnp = of_find_node_by_path_from(root, "/aliases"); if (!aliasnp) return NULL; ret = of_property_read_string(aliasnp, alias, &path); if (ret) return NULL; return of_find_node_by_path_from(root, path); } /* * of_find_node_by_phandle - Find a node given a phandle * @handle: phandle of the node to find */ struct device_node *of_find_node_by_phandle(phandle phandle) { struct device_node *node; of_tree_for_each_node_from(node, root_node) if (node->phandle == phandle) return node; return NULL; } /* * of_get_tree_max_phandle - Find the maximum phandle of a tree * @root: root node of the tree to search in. If NULL use the * internal tree. */ phandle of_get_tree_max_phandle(struct device_node *root) { struct device_node *n; phandle max; if (!root) root = root_node; if (!root) return 0; max = root->phandle; of_tree_for_each_node_from(n, root) { if (n->phandle > max) max = n->phandle; } return max; } /* * of_node_create_phandle - create a phandle for a node * @node: The node to create a phandle in * * returns the new phandle or the existing phandle if the node * already has a phandle. */ phandle of_node_create_phandle(struct device_node *node) { phandle p; struct device_node *root; if (node->phandle) return node->phandle; root = of_find_root_node(node); p = of_get_tree_max_phandle(root) + 1; node->phandle = p; p = __cpu_to_be32(p); of_set_property(node, "phandle", &p, sizeof(p), 1); return node->phandle; } /* * Find a property with a given name for a given node * and return the value. */ const void *of_get_property(const struct device_node *np, const char *name, int *lenp) { struct property *pp = of_find_property(np, name, lenp); return pp ? pp->value : NULL; } /** Checks if the given "compat" string matches one of the strings in * the device's "compatible" property */ int of_device_is_compatible(const struct device_node *device, const char *compat) { const char *cp; int cplen, l; cp = of_get_property(device, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { if (of_compat_cmp(cp, compat, strlen(compat)) == 0) return 1; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } /** * of_find_node_by_name - Find a node by its "name" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. * @name: The name string to match against * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_node_by_name(struct device_node *from, const char *name) { struct device_node *np; if (!from) from = root_node; of_tree_for_each_node_from(np, from) if (np->name && !of_node_cmp(np->name, name)) return np; return NULL; } /** * of_find_node_by_type - Find a node by its "device_type" property * @from: The node to start searching from, or NULL to start searching * the entire device tree. The node you pass will not be * searched, only the next one will; typically, you pass * what the previous call returned. * @type: The type string to match against. * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_node_by_type(struct device_node *from, const char *type) { struct device_node *np; const char *device_type; int ret; if (!from) from = root_node; of_tree_for_each_node_from(np, from) { ret = of_property_read_string(np, "device_type", &device_type); if (!ret && !of_node_cmp(device_type, type)) return np; } return NULL; } /** * of_find_compatible_node - Find a node based on type and one of the * tokens in its "compatible" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. * @type: The type string to match "device_type" or NULL to ignore * (currently always ignored in barebox) * @compatible: The string to match to one of the tokens in the device * "compatible" list. * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compatible) { struct device_node *np; if (!from) from = root_node; of_tree_for_each_node_from(np, from) if (of_device_is_compatible(np, compatible)) return np; return NULL; } /** * of_find_node_with_property - Find a node which has a property with * the given name. * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. * @prop_name: The name of the property to look for. * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_node_with_property(struct device_node *from, const char *prop_name) { struct device_node *np; if (!from) from = root_node; of_tree_for_each_node_from(np, from) { struct property *pp = of_find_property(np, prop_name, NULL); if (pp) return np; } return NULL; } /** * of_match_node - Tell if an device_node has a matching of_match structure * @matches: array of of device match structures to search in * @node: the of device structure to match against * * Low level utility function used by device matching. */ const struct of_device_id *of_match_node(const struct of_device_id *matches, const struct device_node *node) { if (!matches || !node) return NULL; while (matches->compatible) { if (of_device_is_compatible(node, matches->compatible) == 1) return matches; matches++; } return NULL; } /** * of_find_matching_node_and_match - Find a node based on an of_device_id * match table. * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. * @matches: array of of device match structures to search in * @match Updated to point at the matches entry which matched * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_matching_node_and_match(struct device_node *from, const struct of_device_id *matches, const struct of_device_id **match) { struct device_node *np; if (match) *match = NULL; if (!from) from = root_node; of_tree_for_each_node_from(np, from) { const struct of_device_id *m = of_match_node(matches, np); if (m) { if (match) *match = m; return np; } } return NULL; } /** * of_find_property_value_of_size * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @len: requested length of property value * * Search for a property in a device node and valid the requested size. * Returns the property value on success, -EINVAL if the property does not * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * */ static void *of_find_property_value_of_size(const struct device_node *np, const char *propname, uint32_t len) { struct property *prop = of_find_property(np, propname, NULL); if (!prop) return ERR_PTR(-EINVAL); if (!prop->value) return ERR_PTR(-ENODATA); if (len > prop->length) return ERR_PTR(-EOVERFLOW); return prop->value; } /** * of_property_read_u32_index - Find and read a uint32_t from a multi-value property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the uint32_t in the list of values * @out_value: pointer to return value, modified only if no error. * * Search for a property in a device node and read nth 32-bit value from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid uint32_t value can be decoded. */ int of_property_read_u32_index(const struct device_node *np, const char *propname, uint32_t index, uint32_t *out_value) { const uint32_t *val = of_find_property_value_of_size(np, propname, ((index + 1) * sizeof(*out_value))); if (IS_ERR(val)) return PTR_ERR(val); *out_value = __be32_to_cpup(((__be32 *)val) + index); return 0; } /** * of_property_read_u8_array - Find and read an array of uint8_t from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_value: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 8-bit value(s) from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * dts entry of array should be like: * property = /bits/ 8 <0x50 0x60 0x70>; * * The out_value is modified only if a valid uint8_t value can be decoded. */ int of_property_read_u8_array(const struct device_node *np, const char *propname, uint8_t *out_values, size_t sz) { const uint8_t *val = of_find_property_value_of_size(np, propname, (sz * sizeof(*out_values))); if (IS_ERR(val)) return PTR_ERR(val); while (sz--) *out_values++ = *val++; return 0; } /** * of_property_read_u16_array - Find and read an array of uint16_t from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_value: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 16-bit value(s) from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * dts entry of array should be like: * property = /bits/ 16 <0x5000 0x6000 0x7000>; * * The out_value is modified only if a valid uint16_t value can be decoded. */ int of_property_read_u16_array(const struct device_node *np, const char *propname, uint16_t *out_values, size_t sz) { const __be16 *val = of_find_property_value_of_size(np, propname, (sz * sizeof(*out_values))); if (IS_ERR(val)) return PTR_ERR(val); while (sz--) *out_values++ = __be16_to_cpup(val++); return 0; } /** * of_property_read_u32_array - Find and read an array of 32 bit integers * from a property. * * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_value: pointer to return value, modified only if return value is 0. * @sz: number of array elements to read * * Search for a property in a device node and read 32-bit value(s) from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid uint32_t value can be decoded. */ int of_property_read_u32_array(const struct device_node *np, const char *propname, uint32_t *out_values, size_t sz) { const __be32 *val = of_find_property_value_of_size(np, propname, (sz * sizeof(*out_values))); if (IS_ERR(val)) return PTR_ERR(val); while (sz--) *out_values++ = __be32_to_cpup(val++); return 0; } /** * of_property_read_u64 - Find and read a 64 bit integer from a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_value: pointer to return value, modified only if return value is 0. * * Search for a property in a device node and read a 64-bit value from * it. Returns 0 on success, -EINVAL if the property does not exist, * -ENODATA if property does not have a value, and -EOVERFLOW if the * property data isn't large enough. * * The out_value is modified only if a valid uint64_t value can be decoded. */ int of_property_read_u64(const struct device_node *np, const char *propname, uint64_t *out_value) { const __be32 *val = of_find_property_value_of_size(np, propname, sizeof(*out_value)); if (IS_ERR(val)) return PTR_ERR(val); *out_value = of_read_number(val, 2); return 0; } /** * of_property_read_string - Find and read a string from a property * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @out_string: pointer to null terminated return string, modified only if * return value is 0. * * Search for a property in a device tree node and retrieve a null * terminated string value (pointer to data, not a copy). Returns 0 on * success, -EINVAL if the property does not exist, -ENODATA if property * does not have a value, and -EILSEQ if the string is not null-terminated * within the length of the property data. * * The out_string pointer is modified only if a valid string can be decoded. */ int of_property_read_string(struct device_node *np, const char *propname, const char **out_string) { struct property *prop = of_find_property(np, propname, NULL); if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; if (strnlen(prop->value, prop->length) >= prop->length) return -EILSEQ; *out_string = prop->value; return 0; } /** * of_property_read_string_index - Find and read a string from a multiple * strings property. * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * @index: index of the string in the list of strings * @out_string: pointer to null terminated return string, modified only if * return value is 0. * * Search for a property in a device tree node and retrieve a null * terminated string value (pointer to data, not a copy) in the list of strings * contained in that property. * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if * property does not have a value, and -EILSEQ if the string is not * null-terminated within the length of the property data. * * The out_string pointer is modified only if a valid string can be decoded. */ int of_property_read_string_index(struct device_node *np, const char *propname, int index, const char **output) { struct property *prop = of_find_property(np, propname, NULL); int i = 0; size_t l = 0, total = 0; const char *p; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; if (strnlen(prop->value, prop->length) >= prop->length) return -EILSEQ; p = prop->value; for (i = 0; total < prop->length; total += l, p += l) { l = strlen(p) + 1; if (i++ == index) { *output = p; return 0; } } return -ENODATA; } /** * of_property_match_string() - Find string in a list and return index * @np: pointer to node containing string list property * @propname: string list property name * @string: pointer to string to search for in string list * * This function searches a string list property and returns the index * of a specific string value. */ int of_property_match_string(struct device_node *np, const char *propname, const char *string) { struct property *prop = of_find_property(np, propname, NULL); size_t l; int i; const char *p, *end; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; p = prop->value; end = p + prop->length; for (i = 0; p < end; i++, p += l) { l = strlen(p) + 1; if (p + l > end) return -EILSEQ; pr_debug("comparing %s with %s\n", string, p); if (strcmp(string, p) == 0) return i; /* Found it; return index */ } return -ENODATA; } /** * of_property_count_strings - Find and return the number of strings from a * multiple strings property. * @np: device node from which the property value is to be read. * @propname: name of the property to be searched. * * Search for a property in a device tree node and retrieve the number of null * terminated string contain in it. Returns the number of strings on * success, -EINVAL if the property does not exist, -ENODATA if property * does not have a value, and -EILSEQ if the string is not null-terminated * within the length of the property data. */ int of_property_count_strings(struct device_node *np, const char *propname) { struct property *prop = of_find_property(np, propname, NULL); int i = 0; size_t l = 0, total = 0; const char *p; if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; if (strnlen(prop->value, prop->length) >= prop->length) return -EILSEQ; p = prop->value; for (i = 0; total < prop->length; total += l, p += l, i++) l = strlen(p) + 1; return i; } const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, uint32_t *pu) { const void *curv = cur; if (!prop) return NULL; if (!cur) { curv = prop->value; goto out_val; } curv += sizeof(*cur); if (curv >= prop->value + prop->length) return NULL; out_val: *pu = __be32_to_cpup(curv); return curv; } const char *of_prop_next_string(struct property *prop, const char *cur) { const void *curv = cur; if (!prop) return NULL; if (!cur) return prop->value; curv += strlen(cur) + 1; if (curv >= prop->value + prop->length) return NULL; return curv; } /** * of_property_write_bool - Create/Delete empty (bool) property. * * @np: device node from which the property is to be set. * @propname: name of the property to be set. * * Search for a property in a device node and create or delete the property. * If the property already exists and write value is false, the property is * deleted. If write value is true and the property does not exist, it is * created. Returns 0 on success, -ENOMEM if the property or array * of elements cannot be created. */ int of_property_write_bool(struct device_node *np, const char *propname, const bool value) { struct property *prop = of_find_property(np, propname, NULL); if (!value) { if (prop) of_delete_property(prop); return 0; } if (!prop) prop = of_new_property(np, propname, NULL, 0); if (!prop) return -ENOMEM; return 0; } /** * of_property_write_u8_array - Write an array of uint8_t to a property. If * the property does not exist, it will be created and appended to the given * device node. * * @np: device node to which the property value is to be written. * @propname: name of the property to be written. * @values: pointer to array elements to write. * @sz: number of array elements to write. * * Search for a property in a device node and write 8-bit value(s) to * it. If the property does not exist, it will be created and appended to * the device node. Returns 0 on success, -ENOMEM if the property or array * of elements cannot be created. */ int of_property_write_u8_array(struct device_node *np, const char *propname, const uint8_t *values, size_t sz) { struct property *prop = of_find_property(np, propname, NULL); uint8_t *val; if (prop) of_delete_property(prop); prop = of_new_property(np, propname, NULL, sizeof(*val) * sz); if (!prop) return -ENOMEM; val = prop->value; while (sz--) *val++ = *values++; return 0; } /** * of_property_write_u16_array - Write an array of uint16_t to a property. If * the property does not exist, it will be created and appended to the given * device node. * * @np: device node to which the property value is to be written. * @propname: name of the property to be written. * @values: pointer to array elements to write. * @sz: number of array elements to write. * * Search for a property in a device node and write 16-bit value(s) to * it. If the property does not exist, it will be created and appended to * the device node. Returns 0 on success, -ENOMEM if the property or array * of elements cannot be created. */ int of_property_write_u16_array(struct device_node *np, const char *propname, const uint16_t *values, size_t sz) { struct property *prop = of_find_property(np, propname, NULL); __be16 *val; if (prop) of_delete_property(prop); prop = of_new_property(np, propname, NULL, sizeof(*val) * sz); if (!prop) return -ENOMEM; val = prop->value; while (sz--) *val++ = __cpu_to_be16(*values++); return 0; } /** * of_property_write_u32_array - Write an array of uint32_t to a property. If * the property does not exist, it will be created and appended to the given * device node. * * @np: device node to which the property value is to be written. * @propname: name of the property to be written. * @values: pointer to array elements to write. * @sz: number of array elements to write. * * Search for a property in a device node and write 32-bit value(s) to * it. If the property does not exist, it will be created and appended to * the device node. Returns 0 on success, -ENOMEM if the property or array * of elements cannot be created. */ int of_property_write_u32_array(struct device_node *np, const char *propname, const uint32_t *values, size_t sz) { struct property *prop = of_find_property(np, propname, NULL); __be32 *val; if (prop) of_delete_property(prop); prop = of_new_property(np, propname, NULL, sizeof(*val) * sz); if (!prop) return -ENOMEM; val = prop->value; while (sz--) *val++ = __cpu_to_be32(*values++); return 0; } /** * of_property_write_u64_array - Write an array of uint64_t to a property. If * the property does not exist, it will be created and appended to the given * device node. * * @np: device node to which the property value is to be written. * @propname: name of the property to be written. * @values: pointer to array elements to write. * @sz: number of array elements to write. * * Search for a property in a device node and write 64-bit value(s) to * it. If the property does not exist, it will be created and appended to * the device node. Returns 0 on success, -ENOMEM if the property or array * of elements cannot be created. */ int of_property_write_u64_array(struct device_node *np, const char *propname, const uint64_t *values, size_t sz) { struct property *prop = of_find_property(np, propname, NULL); __be32 *val; if (prop) of_delete_property(prop); prop = of_new_property(np, propname, NULL, 2 * sizeof(*val) * sz); if (!prop) return -ENOMEM; val = prop->value; while (sz--) { of_write_number(val, *values++, 2); val += 2; } return 0; } /** * of_parse_phandle - Resolve a phandle property to a device_node pointer * @np: Pointer to device node holding phandle property * @phandle_name: Name of property holding a phandle value * @index: For properties holding a table of phandles, this is the index into * the table * * Returns the device_node pointer found or NULL. */ struct device_node *of_parse_phandle(const struct device_node *np, const char *phandle_name, int index) { const __be32 *phandle; int size; phandle = of_get_property(np, phandle_name, &size); if ((!phandle) || (size < sizeof(*phandle) * (index + 1))) return NULL; return of_find_node_by_phandle(__be32_to_cpup(phandle + index)); } /** * of_parse_phandle_with_args() - Find a node pointed by phandle in a list * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * @index: index of a phandle to parse out * @out_args: optional pointer to output arguments structure (will be filled) * * This function is useful to parse lists of phandles and their arguments. * Returns 0 on success and fills out_args, on error returns appropriate * errno value. * * Example: * * phandle1: node1 { * #list-cells = <2>; * } * * phandle2: node2 { * #list-cells = <1>; * } * * node3 { * list = <&phandle1 1 2 &phandle2 3>; * } * * To get a device_node of the `node2' node you may call this: * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); */ static int __of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int index, struct of_phandle_args *out_args) { const __be32 *list, *list_end; int rc = 0, size, cur_index = 0; uint32_t count = 0; struct device_node *node = NULL; phandle phandle; /* Retrieve the phandle list property */ list = of_get_property(np, list_name, &size); if (!list) return -ENOENT; list_end = list + size / sizeof(*list); /* Loop over the phandles until all the requested entry is found */ while (list < list_end) { rc = -EINVAL; count = 0; /* * If phandle is 0, then it is an empty entry with no * arguments. Skip forward to the next entry. */ phandle = __be32_to_cpup(list++); if (phandle) { /* * Find the provider node and parse the #*-cells * property to determine the argument length */ node = of_find_node_by_phandle(phandle); if (!node) { pr_err("%s: could not find phandle\n", np->full_name); goto err; } if (of_property_read_u32(node, cells_name, &count)) { pr_err("%s: could not get %s for %s\n", np->full_name, cells_name, node->full_name); goto err; } /* * Make sure that the arguments actually fit in the * remaining property data length */ if (list + count > list_end) { pr_err("%s: arguments longer than property\n", np->full_name); goto err; } } /* * All of the error cases above bail out of the loop, so at * this point, the parsing is successful. If the requested * index matches, then fill the out_args structure and return, * or return -ENOENT for an empty entry. */ rc = -ENOENT; if (cur_index == index) { if (!phandle) goto err; if (out_args) { int i; if (count > MAX_PHANDLE_ARGS) count = MAX_PHANDLE_ARGS; out_args->np = node; out_args->args_count = count; for (i = 0; i < count; i++) out_args->args[i] = __be32_to_cpup(list++); } /* Found it! return success */ return 0; } node = NULL; list += count; cur_index++; } /* * Unlock node before returning result; will be one of: * -ENOENT : index is for empty phandle * -EINVAL : parsing error on data * [1..n] : Number of phandle (count mode; when index = -1) */ rc = index < 0 ? cur_index : -ENOENT; err: return rc; } int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name, int index, struct of_phandle_args *out_args) { if (index < 0) return -EINVAL; return __of_parse_phandle_with_args(np, list_name, cells_name, index, out_args); } /** * of_count_phandle_with_args() - Find the number of phandles references in a property * @np: pointer to a device tree node containing a list * @list_name: property name that contains a list * @cells_name: property name that specifies phandles' arguments count * * Returns the number of phandle + argument tuples within a property. It * is a typical pattern to encode a list of phandle and variable * arguments into a single property. The number of arguments is encoded * by a property in the phandle-target node. For example, a gpios * property would contain a list of GPIO specifies consisting of a * phandle and 1 or more arguments. The number of arguments are * determined by the #gpio-cells property in the node pointed to by the * phandle. */ int of_count_phandle_with_args(const struct device_node *np, const char *list_name, const char *cells_name) { return __of_parse_phandle_with_args(np, list_name, cells_name, -1, NULL); } /** * of_machine_is_compatible - Test root of device tree for a given compatible value * @compat: compatible string to look for in root node's compatible property. * * Returns true if the root node has the given value in its * compatible property. */ int of_machine_is_compatible(const char *compat) { if (!root_node) return 0; return of_device_is_compatible(root_node, compat); } /** * of_find_node_by_path_from - Find a node matching a full OF path * relative to a given root node. * @path: The full path to match * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_node_by_path_from(struct device_node *from, const char *path) { char *slash, *p, *freep; if (!from) from = root_node; if (!from || !path || *path != '/') return NULL; path++; freep = p = strdup(path); while (1) { if (!*p) goto out; slash = strchr(p, '/'); if (slash) *slash = 0; from = of_get_child_by_name(from, p); if (!from) goto out; if (!slash) goto out; p = slash + 1; } out: free(freep); return from; } /** * of_find_node_by_path - Find a node matching a full OF path * @path: The full path to match * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_node_by_path(const char *path) { return of_find_node_by_path_from(root_node, path); } /** * of_find_node_by_path_or_alias - Find a node matching a full OF path * or an alias * @root: The root node. If NULL the internal tree is used * @str: the full path or alias * * Returns a pointer to the node found or NULL. */ struct device_node *of_find_node_by_path_or_alias(struct device_node *root, const char *str) { if (*str == '/') return of_find_node_by_path_from(root, str); else return of_find_node_by_alias(root, str); } /** * of_modalias_node - Lookup appropriate modalias for a device node * @node: pointer to a device tree node * @modalias: Pointer to buffer that modalias value will be copied into * @len: Length of modalias value * * Based on the value of the compatible property, this routine will attempt * to choose an appropriate modalias value for a particular device tree node. * It does this by stripping the manufacturer prefix (as delimited by a ',') * from the first entry in the compatible list property. * * This routine returns 0 on success, <0 on failure. */ int of_modalias_node(struct device_node *node, char *modalias, int len) { const char *compatible, *p; int cplen; compatible = of_get_property(node, "compatible", &cplen); if (!compatible || strlen(compatible) > cplen) return -ENODEV; p = strchr(compatible, ','); strlcpy(modalias, p ? p + 1 : compatible, len); return 0; } struct device_node *of_get_root_node(void) { return root_node; } int of_set_root_node(struct device_node *node) { if (node && root_node) return -EBUSY; root_node = node; of_alias_scan(); return 0; } /** * of_device_is_available - check if a device is available for use * * @device: Node to check for availability * * Returns 1 if the status property is absent or set to "okay" or "ok", * 0 otherwise */ int of_device_is_available(const struct device_node *device) { const char *status; int statlen; status = of_get_property(device, "status", &statlen); if (status == NULL) return 1; if (statlen > 0) { if (!strcmp(status, "okay") || !strcmp(status, "ok")) return 1; } return 0; } /** * of_get_parent - Get a node's parent if any * @node: Node to get parent * * Returns a pointer to the parent node or NULL if already at root. */ struct device_node *of_get_parent(const struct device_node *node) { return (!node) ? NULL : node->parent; } /** * of_get_next_available_child - Find the next available child node * @node: parent node * @prev: previous child of the parent node, or NULL to get first * * This function is like of_get_next_child(), except that it * automatically skips any disabled nodes (i.e. status = "disabled"). */ struct device_node *of_get_next_available_child(const struct device_node *node, struct device_node *prev) { prev = list_prepare_entry(prev, &node->children, parent_list); list_for_each_entry_continue(prev, &node->children, parent_list) if (of_device_is_available(prev)) return prev; return NULL; } /** * of_get_child_count - Count child nodes of given parent node * @parent: parent node * * Returns the number of child nodes or -EINVAL on NULL parent node. */ int of_get_child_count(const struct device_node *parent) { struct device_node *child; int num = 0; if (!parent) return -EINVAL; for_each_child_of_node(parent, child) num++; return num; } /** * of_get_available_child_count - Count available child nodes of given * parent node * @parent: parent node * * Returns the number of available child nodes or -EINVAL on NULL parent * node. */ int of_get_available_child_count(const struct device_node *parent) { struct device_node *child; int num = 0; if (!parent) return -EINVAL; for_each_child_of_node(parent, child) if (of_device_is_available(child)) num++; return num; } /** * of_get_child_by_name - Find the child node by name for a given parent * @node: parent node * @name: child name to look for. * * This function looks for child node for given matching name * * Returns a node pointer if found or NULL. */ struct device_node *of_get_child_by_name(const struct device_node *node, const char *name) { struct device_node *child; for_each_child_of_node(node, child) if (child->name && (of_node_cmp(child->name, name) == 0)) return child; return NULL; } void of_print_nodes(struct device_node *node, int indent) { struct device_node *n; struct property *p; int i; if (!node) return; for (i = 0; i < indent; i++) printf("\t"); printf("%s%s\n", node->name, node->name ? " {" : "{"); list_for_each_entry(p, &node->properties, list) { for (i = 0; i < indent + 1; i++) printf("\t"); printf("%s", p->name); if (p->length) { printf(" = "); of_print_property(p->value, p->length); } printf(";\n"); } list_for_each_entry(n, &node->children, parent_list) { of_print_nodes(n, indent + 1); } for (i = 0; i < indent; i++) printf("\t"); printf("};\n"); } struct device_node *of_new_node(struct device_node *parent, const char *name) { struct device_node *node; int ret; node = xzalloc(sizeof(*node)); node->parent = parent; if (parent) list_add_tail(&node->parent_list, &parent->children); INIT_LIST_HEAD(&node->children); INIT_LIST_HEAD(&node->properties); if (parent) { node->name = strdup(name); ret = asprintf(&node->full_name, "%s/%s", node->parent->full_name, name); if (ret < 0) return NULL; list_add(&node->list, &parent->list); } else { node->name = strdup(""); node->full_name = strdup(""); INIT_LIST_HEAD(&node->list); } return node; } struct property *of_new_property(struct device_node *node, const char *name, const void *data, int len) { struct property *prop; prop = xzalloc(sizeof(*prop)); prop->name = strdup(name); if (!prop->name) { free(prop); return NULL; } prop->length = len; prop->value = xzalloc(len); if (data) memcpy(prop->value, data, len); list_add_tail(&prop->list, &node->properties); return prop; } void of_delete_property(struct property *pp) { if (!pp) return; list_del(&pp->list); free(pp->name); free(pp->value); free(pp); } /** * of_set_property - create a property for a given node * @node - the node * @name - the name of the property * @val - the value for the property * @len - the length of the properties value * @create - if true, the property is created if not existing already */ int of_set_property(struct device_node *np, const char *name, const void *val, int len, int create) { struct property *pp = of_find_property(np, name, NULL); if (!np) return -ENOENT; if (!pp && !create) return -ENOENT; of_delete_property(pp); pp = of_new_property(np, name, val, len); if (!pp) return -ENOMEM; return 0; } struct device_node *of_chosen; const char *of_model; const char *of_get_model(void) { return of_model; } const struct of_device_id of_default_bus_match_table[] = { { .compatible = "simple-bus", }, { /* sentinel */ } }; /** * of_create_node - create a new node including its parents * @path - the nodepath to create */ struct device_node *of_create_node(struct device_node *root, const char *path) { char *slash, *p, *freep; struct device_node *tmp, *dn = root; if (*path != '/') return NULL; path++; p = freep = strdup(path); while (1) { if (!*p) goto out; slash = strchr(p, '/'); if (slash) *slash = 0; tmp = of_get_child_by_name(dn, p); if (tmp) dn = tmp; else dn = of_new_node(dn, p); if (!dn) goto out; if (!slash) goto out; p = slash + 1; } out: free(freep); return dn; } void of_delete_node(struct device_node *node) { struct device_node *n, *nt; struct property *p, *pt; if (!node) return; list_for_each_entry_safe(p, pt, &node->properties, list) of_delete_property(p); list_for_each_entry_safe(n, nt, &node->children, parent_list) of_delete_node(n); if (node->parent) { list_del(&node->parent_list); list_del(&node->list); } free(node->name); free(node->full_name); free(node); if (node == root_node) of_set_root_node(NULL); } /** * of_device_enable - enable a devicenode device * @node - the node to enable * * This deletes the status property of a devicenode effectively * enabling the device. */ int of_device_enable(struct device_node *node) { struct property *pp; pp = of_find_property(node, "status", NULL); if (!pp) return 0; of_delete_property(pp); return 0; } /** * of_device_enable_path - enable a devicenode * @path - the nodepath to enable * * wrapper around of_device_enable taking the nodepath as argument */ int of_device_enable_path(const char *path) { struct device_node *node; node = of_find_node_by_path(path); if (!node) return -ENODEV; return of_device_enable(node); } /** * of_device_enable - disable a devicenode device * @node - the node to disable * * This sets the status of a devicenode to "disabled" */ int of_device_disable(struct device_node *node) { return of_set_property(node, "status", "disabled", sizeof("disabled"), 1); } /** * of_device_disable_path - disable a devicenode * @path - the nodepath to disable * * wrapper around of_device_disable taking the nodepath as argument */ int of_device_disable_path(const char *path) { struct device_node *node; node = of_find_node_by_path(path); if (!node) return -ENODEV; return of_device_disable(node); } int scan_proc_dir(struct device_node *node, const char *path) { DIR *dir; struct dirent *dirent; struct stat s; int ret; void *buf; dir = opendir(path); if (!dir) return -errno; while (1) { char *cur; dirent = readdir(dir); if (!dirent) break; if (dirent->d_name[0] == '.') continue; ret = asprintf(&cur, "%s/%s", path, dirent->d_name); if (ret < 0) return -ENOMEM; ret = stat(cur, &s); if (ret) return -errno; if (S_ISREG(s.st_mode)) { int fd; fd = open(cur, O_RDONLY); if (fd < 0) return -errno; buf = xzalloc(s.st_size); ret = read(fd, buf, s.st_size); if (ret < 0) return -errno; close(fd); of_new_property(node, dirent->d_name, buf, s.st_size); if (!strcmp(dirent->d_name, "phandle")) node->phandle = be32_to_cpu(*(__be32 *)buf); } if (S_ISDIR(s.st_mode)) { struct device_node *new; new = of_new_node(node, dirent->d_name); scan_proc_dir(new, cur); } free(cur); } closedir(dir); return 0; } struct device_node *of_read_proc_devicetree(void) { struct device_node *root; void *fdt; int ret; fdt = read_file("/sys/firmware/fdt", NULL); if (fdt) { root = of_unflatten_dtb(fdt); return root; } root = of_new_node(NULL, NULL); ret = scan_proc_dir(root, "/sys/firmware/devicetree/base"); if (!ret) return root; ret = scan_proc_dir(root, "/proc/device-tree"); if (!ret) return root; of_delete_node(root); return ERR_PTR(ret); } struct udev_device *of_find_device_by_node_path(const char *of_full_path) { struct udev *udev; struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; struct udev_device *dev; udev = udev_new(); if (!udev) { fprintf(stderr, "Can't create udev\n"); return NULL; } enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_property(enumerate, "OF_FULLNAME", of_full_path); udev_enumerate_scan_devices(enumerate); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { const char *path; /* * Get the filename of the /sys entry for the device * and create a udev_device object (dev) representing it */ path = udev_list_entry_get_name(dev_list_entry); dev = udev_device_new_from_syspath(udev, path); goto out; } dev = NULL; out: udev_enumerate_unref(enumerate); udev_unref(udev); return dev; } static struct udev_device *device_find_mtd_partition(struct udev_device *dev, const char *name) { struct udev *udev; struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; struct udev_device *part; udev = udev_new(); if (!udev) { fprintf(stderr, "Can't create udev\n"); return NULL; } enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_parent(enumerate, dev); udev_enumerate_scan_devices(enumerate); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { const char *path, *partname; path = udev_list_entry_get_name(dev_list_entry); part = udev_device_new_from_syspath(udev, path); partname = udev_device_get_sysattr_value(part, "name"); if (!partname) continue; if (!strcmp(partname, name)) return part; } udev_enumerate_unref(enumerate); udev_unref(udev); return NULL; } /* * device_find_block_device - extract device path from udev block device * * @dev: the udev_device to extract information from * @devpath: returns the devicepath under which the block device is accessible * * returns 0 for success or negative error value on failure. */ int device_find_block_device(struct udev_device *dev, char **devpath) { struct udev *udev; struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; struct udev_device *part; const char *outpath; int ret; udev = udev_new(); if (!udev) { fprintf(stderr, "Can't create udev\n"); return -ENODEV; } enumerate = udev_enumerate_new(udev); /* block device and partitions get identified by subsystem in subtree */ udev_enumerate_add_match_parent(enumerate, dev); udev_enumerate_add_match_subsystem(enumerate, "block"); udev_enumerate_scan_devices(enumerate); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { const char *path, *devtype; path = udev_list_entry_get_name(dev_list_entry); part = udev_device_new_from_syspath(udev, path); /* distinguish device (disk) from partitions */ devtype = udev_device_get_devtype(part); if (!devtype) continue; if (!strcmp(devtype, "disk")) { outpath = udev_device_get_devnode(part); *devpath = strdup(outpath); ret = 0; goto out; } } ret = -ENODEV; out: udev_enumerate_unref(enumerate); udev_unref(udev); return ret; } /* * of_parse_partition - extract offset and size from a partition device_node * * returns true for success, negative error code otherwise */ static int of_parse_partition(struct device_node *node, off_t *offset, size_t *size) { const __be32 *reg; int len; int a_cells, s_cells; reg = of_get_property(node, "reg", &len); if (!reg) return -EINVAL; a_cells = of_n_addr_cells(node); s_cells = of_n_size_cells(node); *offset = of_read_number(reg, a_cells); *size = of_read_number(reg + a_cells, s_cells); return 0; } /* * udev_device_is_mtd - test if udev_device is a mtd device * * returns true if this is a mtd device, false otherwise */ static int udev_device_is_mtd(struct udev_device *dev) { const char *devtype; devtype = udev_device_get_devtype(dev); if (!devtype) return 0; if (strcmp(devtype, "mtd")) return 0; else return 1; } /* * udev_device_is_eeprom - test if udev_device is a EEPROM * * returns true if this is a EEPROM, false otherwise */ static int udev_device_is_eeprom(struct udev_device *dev) { char *path; struct stat s; int ret; ret = asprintf(&path, "%s/eeprom", udev_device_get_syspath(dev)); if (ret < 0) return 0; ret = stat(path, &s); free(path); if (ret) return 0; else return 1; } /* * udev_parse_mtd - get information from a mtd udev_device * @dev: the udev_device to extract information from * @devpath: returns the devicepath under which the mtd device is accessible * @size: returns the size of the mtd device * * returns 0 for success or negative error value on failure. *devpath * will be valid on success and must be freed after usage. */ static int udev_parse_mtd(struct udev_device *dev, char **devpath, size_t *size) { const char *devtype; const char *sizestr; const char *outpath; if (!udev_device_is_mtd(dev)) return -EINVAL; sizestr = udev_device_get_sysattr_value(dev, "size"); if (!sizestr) return -EINVAL; *size = atol(sizestr); outpath = udev_device_get_devnode(dev); if (!outpath) return -ENOENT; *devpath = strdup(outpath); return 0; } /* * udev_parse_eeprom - get information from an EEPROM udev_device * @dev: the udev_device to extract information from * @devpath: returns the devicepath under which the EEPROM is accessible * * returns 0 for success or negative error value on failure. *devpath * will be valid on success and must be freed after usage. */ static int udev_parse_eeprom(struct udev_device *dev, char **devnode) { struct stat s; char *path; int ret; /* * EEPROMs do not have a device node under /dev/ and no partitions in the * kernel. They show up as a complete device under /sys/. Here we parse * devicetree partitions manually for the EEPROMs. */ ret = asprintf(&path, "%s/eeprom", udev_device_get_syspath(dev)); if (ret < 0) return -ENOMEM; ret = stat(path, &s); if (ret) return -errno; *devnode = path; return 0; } static struct udev_device *of_find_mtd_device(struct udev_device *parent) { struct udev *udev; struct udev_enumerate *enumerate; struct udev_list_entry *devices, *dev_list_entry; struct udev_device *dev; udev = udev_new(); if (!udev) { fprintf(stderr, "Can't create udev\n"); return NULL; } enumerate = udev_enumerate_new(udev); udev_enumerate_add_match_parent(enumerate, parent); udev_enumerate_add_match_subsystem(enumerate, "mtd"); udev_enumerate_scan_devices(enumerate); devices = udev_enumerate_get_list_entry(enumerate); udev_list_entry_foreach(dev_list_entry, devices) { const char *path; /* * Get the filename of the /sys entry for the device * and create a udev_device object (dev) representing it */ path = udev_list_entry_get_name(dev_list_entry); dev = udev_device_new_from_syspath(udev, path); goto out; } dev = NULL; out: udev_enumerate_unref(enumerate); udev_unref(udev); return dev; } /* * of_get_devicepath - get information how to access device corresponding to a device_node * @partition_node: The device_node which shall be accessed * @devpath: Returns the devicepath under which the device is accessible * @offset: Returns the offset in the device * @size: Returns the size of the device * * This function takes a device_node which represents a partition. * For this partition the function returns the device path and the offset * and size in the device. For mtd devices the path will be /dev/mtdx, for * EEPROMs it will be /sys/.../eeprom and for block devices it will be /dev/... * For mtd devices the device path returned will be the partition itself. * Since EEPROMs do not have partitions under Linux @offset and @size will * describe the offset and size inside the full device. The same applies to * block devices. * * returns 0 for success or negative error value on failure. */ int of_get_devicepath(struct device_node *partition_node, char **devpath, off_t *offset, size_t *size) { struct device_node *node; struct udev_device *dev, *partdev, *mtd; const char *outpath, *partname; int ret; *offset = 0; *size = 0; /* * simplest case: This nodepath can directly be translated into * a mtd or eeprom device. A mtd device requires that the mtd * partitions have a device_node set in the kernel. This requires * an out-of-tree kernel patch. */ dev = of_find_device_by_node_path(partition_node->full_name); if (dev) { if (udev_device_is_eeprom(dev)) { return udev_parse_eeprom(dev, devpath); } else { /* try to find a block device */ ret = udev_parse_mtd(dev, devpath, size); if (ret) { ret = device_find_block_device(dev, devpath); if (ret) return ret; return of_parse_partition(partition_node, offset, size); } } } /* * Ok, the partition node has no udev_device. Try parent node. */ node = partition_node->parent; dev = of_find_device_by_node_path(node->full_name); if (!dev) { fprintf(stderr, "%s: cannot find device from node %s\n", __func__, node->full_name); return -ENODEV; } /* find the name of the partition... */ ret = of_property_read_string(partition_node, "label", &partname); if (ret) { fprintf(stderr, "%s: no 'label' property found in %s\n", __func__, partition_node->full_name); return ret; } mtd = of_find_mtd_device(dev); if (mtd) { /* ...find the udev_device by partition name... */ partdev = device_find_mtd_partition(dev, partname); if (!partdev) return -ENODEV; /* ...find the desired information by mtd udev_device */ return udev_parse_mtd(partdev, devpath, size); } if (udev_device_is_eeprom(dev)) { ret = udev_parse_eeprom(dev, devpath); if (ret) return ret; return of_parse_partition(partition_node, offset, size); } return -EINVAL; }