summaryrefslogtreecommitdiffstats
path: root/drivers/ddr/imx/imx8m_ddr_init.c
blob: d9a5d589f27b9ae619999af2ec100a4fc12c4ba1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright 2018-2019 NXP
 */

#define pr_fmt(fmt) "imx8m-ddr: " fmt

#include <common.h>
#include <errno.h>
#include <io.h>
#include <soc/imx8m/ddr.h>
#include <mach/imx/generic.h>
#include <mach/imx/imx8m-regs.h>
#include <mach/imx/imx8m-ccm-regs.h>

struct dram_controller imx8m_dram_controller = {
	.phy_base = IOMEM(IP2APB_DDRPHY_IPS_BASE_ADDR(0)),
};

static void ddr_cfg_umctl2(struct dram_controller *dram, struct dram_cfg_param *ddrc_cfg, int num)
{
	int i = 0;

	dram->imx8m_ddr_old_spreadsheet = true;

	for (i = 0; i < num; i++) {
		if (ddrc_cfg->reg == DDRC_ADDRMAP7(0))
		    dram->imx8m_ddr_old_spreadsheet = false;
		reg32_write((unsigned long)ddrc_cfg->reg, ddrc_cfg->val);
		ddrc_cfg++;
	}

	/*
	 * Older NXP DDR configuration spreadsheets don't initialize ADDRMAP7,
	 * which falsifies the memory size read back from the controller
	 * in barebox proper.
	 */
	if (dram->imx8m_ddr_old_spreadsheet) {
		pr_warn("Working around old spreadsheet. Please regenerate\n");
		/*
		 * Alternatively, stick { DDRC_ADDRMAP7(0), 0xf0f } into
		 * struct dram_timing_info::ddrc_cfg of your old timing file
		 */
		reg32_write(DDRC_ADDRMAP7(0), 0xf0f);
	}
}

static unsigned int g_cdd_rr_max[4];
static unsigned int g_cdd_rw_max[4];
static unsigned int g_cdd_wr_max[4];
static unsigned int g_cdd_ww_max[4];

static unsigned int look_for_max(unsigned int data[], unsigned int addr_start,
				 unsigned int addr_end)
{
	unsigned int i, imax = 0;

	for (i = addr_start; i <= addr_end; i++) {
		if (((data[i] >> 7) == 0) && (data[i] > imax))
			imax = data[i];
	}

	return imax;
}

static void get_trained_CDD(struct dram_controller *dram, u32 fsp)
{
	unsigned int i, ddr_type, tmp;
	unsigned int cdd_cha[12], cdd_chb[12];
	unsigned int cdd_cha_rr_max, cdd_cha_rw_max, cdd_cha_wr_max, cdd_cha_ww_max;
	unsigned int cdd_chb_rr_max, cdd_chb_rw_max, cdd_chb_wr_max, cdd_chb_ww_max;

	ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
	if (ddr_type == 0x20) {
		for (i = 0; i < 6; i++) {
			tmp = dwc_ddrphy_apb_rd(dram, 0x54013UL + i);
			cdd_cha[i * 2] = tmp & 0xff;
			cdd_cha[i * 2 + 1] = (tmp >> 8) & 0xff;
		}

		for (i = 0; i < 7; i++) {
			tmp = dwc_ddrphy_apb_rd(dram, 0x5402cUL + i);
			if (i == 0) {
				cdd_cha[0] = (tmp >> 8) & 0xff;
			} else if (i == 6) {
				cdd_cha[11] = tmp & 0xff;
			} else {
				cdd_chb[ i * 2 - 1] = tmp & 0xff;
				cdd_chb[i * 2] = (tmp >> 8) & 0xff;
			}
		}

		cdd_cha_rr_max = look_for_max(cdd_cha, 0, 1);
		cdd_cha_rw_max = look_for_max(cdd_cha, 2, 5);
		cdd_cha_wr_max = look_for_max(cdd_cha, 6, 9);
		cdd_cha_ww_max = look_for_max(cdd_cha, 10, 11);
		cdd_chb_rr_max = look_for_max(cdd_chb, 0, 1);
		cdd_chb_rw_max = look_for_max(cdd_chb, 2, 5);
		cdd_chb_wr_max = look_for_max(cdd_chb, 6, 9);
		cdd_chb_ww_max = look_for_max(cdd_chb, 10, 11);
		g_cdd_rr_max[fsp] =  cdd_cha_rr_max > cdd_chb_rr_max ? cdd_cha_rr_max : cdd_chb_rr_max;
		g_cdd_rw_max[fsp] =  cdd_cha_rw_max > cdd_chb_rw_max ? cdd_cha_rw_max : cdd_chb_rw_max;
		g_cdd_wr_max[fsp] =  cdd_cha_wr_max > cdd_chb_wr_max ? cdd_cha_wr_max : cdd_chb_wr_max;
		g_cdd_ww_max[fsp] =  cdd_cha_ww_max > cdd_chb_ww_max ? cdd_cha_ww_max : cdd_chb_ww_max;
	} else {
		unsigned int ddr4_cdd[64];

		for( i = 0; i < 29; i++) {
			tmp = dwc_ddrphy_apb_rd(dram, 0x54012UL + i);
			ddr4_cdd[i * 2] = tmp & 0xff;
			ddr4_cdd[i * 2 + 1] = (tmp >> 8) & 0xff;
		}

		g_cdd_rr_max[fsp] = look_for_max(ddr4_cdd, 1, 12);
		g_cdd_ww_max[fsp] = look_for_max(ddr4_cdd, 13, 24);
		g_cdd_rw_max[fsp] = look_for_max(ddr4_cdd, 25, 40);
		g_cdd_wr_max[fsp] = look_for_max(ddr4_cdd, 41, 56);
	}
}

static void update_umctl2_rank_space_setting(unsigned int pstat_num,
					     enum ddrc_type type)
{
	unsigned int i,ddr_type;
	unsigned int rdata, tmp, tmp_t;
	unsigned int ddrc_w2r,ddrc_r2w,ddrc_wr_gap,ddrc_rd_gap;
	unsigned long addr_slot;

	ddr_type = reg32_read(DDRC_MSTR(0)) & 0x3f;
	for (i = 0; i < pstat_num; i++) {
		addr_slot = i ? (i + 1) * 0x1000 : 0;
		if (ddr_type == 0x20) {
			/* update r2w:[13:8], w2r:[5:0] */
			rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
			ddrc_w2r = rdata & 0x3f;
			if (type == DDRC_TYPE_MP)
				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
			else
				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
			ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;

			ddrc_r2w = (rdata >> 8) & 0x3f;
			if (type == DDRC_TYPE_MP)
				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
			else
				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
			ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;

			tmp_t = (rdata & 0xffffc0c0) | (ddrc_r2w << 8) | ddrc_w2r;
			reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
		} else {
			/* update w2r:[5:0] */
			rdata = reg32_read(DDRC_DRAMTMG9(0) + addr_slot);
			ddrc_w2r = rdata & 0x3f;
			if (type == DDRC_TYPE_MP)
				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1);
			else
				tmp = ddrc_w2r + (g_cdd_wr_max[i] >> 1) + 1;
			ddrc_w2r = (tmp > 0x3f) ? 0x3f : tmp;
			tmp_t = (rdata & 0xffffffc0) | ddrc_w2r;
			reg32_write((DDRC_DRAMTMG9(0) + addr_slot), tmp_t);

			/* update r2w:[13:8] */
			rdata = reg32_read(DDRC_DRAMTMG2(0) + addr_slot);
			ddrc_r2w = (rdata >> 8) & 0x3f;
			if (type == DDRC_TYPE_MP)
				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1);
			else
				tmp = ddrc_r2w + (g_cdd_rw_max[i] >> 1) + 1;
			ddrc_r2w = (tmp > 0x3f) ? 0x3f : tmp;

			tmp_t = (rdata & 0xffffc0ff) | (ddrc_r2w << 8);
			reg32_write((DDRC_DRAMTMG2(0) + addr_slot), tmp_t);
		}

		if (type != DDRC_TYPE_MQ) {
			/* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */
			rdata = reg32_read(DDRC_RANKCTL(0) + addr_slot);
			ddrc_wr_gap = (rdata >> 8) & 0xf;
			if (type == DDRC_TYPE_MP)
				tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1);
			else
				tmp = ddrc_wr_gap + (g_cdd_ww_max[i] >> 1) + 1;
			ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;

			ddrc_rd_gap = (rdata >> 4) & 0xf;
			if (type == DDRC_TYPE_MP)
				tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1);
			else
				tmp = ddrc_rd_gap + (g_cdd_rr_max[i] >> 1) + 1;
			ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;

			tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
			reg32_write((DDRC_RANKCTL(0) + addr_slot), tmp_t);
		}
	}

	if (type == DDRC_TYPE_MQ) {
		/* update rankctl: wr_gap:11:8; rd:gap:7:4; quasi-dymic, doc wrong(static) */
		rdata = reg32_read(DDRC_RANKCTL(0));
		ddrc_wr_gap = (rdata >> 8) & 0xf;
		tmp = ddrc_wr_gap + (g_cdd_ww_max[0] >> 1) + 1;
		ddrc_wr_gap = (tmp > 0xf) ? 0xf : tmp;

		ddrc_rd_gap = (rdata >> 4) & 0xf;
		tmp = ddrc_rd_gap + (g_cdd_rr_max[0] >> 1) + 1;
		ddrc_rd_gap = (tmp > 0xf) ? 0xf : tmp;

		tmp_t = (rdata & 0xfffff00f) | (ddrc_wr_gap << 8) | (ddrc_rd_gap << 4);
		reg32_write(DDRC_RANKCTL(0), tmp_t);
	}
}


/* DDR Transfer rate, bus clock is transfer rate / 2, and the DDRC runs at bus
 * clock / 2, which is therefor transfer rate / 4.  */
enum ddr_rate {
	DDR_4000,
	DDR_3720,
	DDR_3200,
	DDR_3000,
	DDR_2600,
	DDR_2400,
	DDR_2376,
	DDR_1600,
	DDR_1000, /* Unused */
	DDR_1066,
	DDR_667,
	DDR_400,
	DDR_250, /* Unused */
	DDR_100,
	DDR_NUM_RATES
};

/* PLL config for IMX8MM type DRAM PLL.  This PLL type isn't documented, but
 * it looks like it is a basically a fractional PLL:
 * Frequency = Ref (24 MHz) / P * M / 2^S
 * Note: Divider is equal to register value
 */
#define MDIV(x) ((x) << 12)
#define PDIV(x) ((x) << 4)
#define SDIV(x) ((x) << 0)

#define LOCK_STATUS     BIT(31)
#define LOCK_SEL_MASK   BIT(29)
#define CLKE_MASK       BIT(11)
#define RST_MASK        BIT(9)
#define BYPASS_MASK     BIT(4)

static const struct imx8mm_fracpll_config {
	uint32_t r1, r2;
	bool valid;
} imx8mm_fracpll_table[DDR_NUM_RATES] = {
	[DDR_4000] = { .valid = true, .r1 = MDIV(250) | PDIV(3) | SDIV(1), .r2 = 0 },
	[DDR_3720] = { .valid = true, .r1 = MDIV(310) | PDIV(2) | SDIV(2), .r2 = 0 },
	[DDR_3200] = { .valid = true, .r1 = MDIV(300) | PDIV(9) | SDIV(0), .r2 = 0 },
	[DDR_3000] = { .valid = true, .r1 = MDIV(250) | PDIV(8) | SDIV(0), .r2 = 0 },
	[DDR_2600] = { .valid = true, .r1 = MDIV(325) | PDIV(3) | SDIV(2), .r2 = 0 },
	[DDR_2400] = { .valid = true, .r1 = MDIV(300) | PDIV(3) | SDIV(2), .r2 = 0 },
	[DDR_2376] = { .valid = true, .r1 = MDIV( 99) | PDIV(1) | SDIV(2), .r2 = 0 },
	[DDR_1600] = { .valid = true, .r1 = MDIV(300) | PDIV(9) | SDIV(1), .r2 = 0 },
	[DDR_1066] = { .valid = true, .r1 = MDIV(400) | PDIV(9) | SDIV(2), .r2 = 0 },
	[DDR_667]  = { .valid = true, .r1 = MDIV(334) | PDIV(3) | SDIV(4), .r2 = 0 },
	[DDR_400]  = { .valid = true, .r1 = MDIV(300) | PDIV(9) | SDIV(3), .r2 = 0 },
};

/* PLL config for IMX8MQ type DRAM PLL.  This is SSCG_PLL:
 * Frequency = Ref (25 MHz) / divr1 * (2*divf1) / divr2 * divf2 / divq
 * Note: IMX8MQ RM, §5.1.5.4.4 Fig. 5-8 shows ÷2 on divf2, but this is not true.
 * Note: divider is register value + 1
 */
#define SSCG_PLL_LOCK			BIT(31)
#define SSCG_PLL_DRAM_PLL_CLKE		BIT(9)
#define SSCG_PLL_PD			BIT(7)
#define SSCG_PLL_BYPASS1		BIT(5)
#define SSCG_PLL_BYPASS2		BIT(4)

#define SSCG_PLL_REF_DIVR2_MASK		(0x3f << 19)
#define SSCG_PLL_REF_DIVR2_VAL(n)	(((n) << 19) & SSCG_PLL_REF_DIVR2_MASK)
#define SSCG_PLL_FEEDBACK_DIV_F1_MASK	(0x3f << 13)
#define SSCG_PLL_FEEDBACK_DIV_F1_VAL(n)	(((n) << 13) & SSCG_PLL_FEEDBACK_DIV_F1_MASK)
#define SSCG_PLL_FEEDBACK_DIV_F2_MASK	(0x3f << 7)
#define SSCG_PLL_FEEDBACK_DIV_F2_VAL(n)	(((n) << 7) & SSCG_PLL_FEEDBACK_DIV_F2_MASK)
#define SSCG_PLL_OUTPUT_DIV_VAL_MASK	(0x3f << 1)
#define SSCG_PLL_OUTPUT_DIV_VAL(n)	(((n) << 1) & SSCG_PLL_OUTPUT_DIV_VAL_MASK)

#define SSCG_PLL_CFG2(divf1, divr2, divf2, divq) \
	(SSCG_PLL_FEEDBACK_DIV_F1_VAL(divf1) | SSCG_PLL_FEEDBACK_DIV_F2_VAL(divf2) | \
	SSCG_PLL_REF_DIVR2_VAL(divr2) | SSCG_PLL_OUTPUT_DIV_VAL(divq))

static const struct imx8mq_ssgcpll_config {
	uint32_t val;
	bool valid;
} imx8mq_ssgcpll_table[DDR_NUM_RATES] = {
	[DDR_3200] = { .valid = true, .val = SSCG_PLL_CFG2(39, 29, 11, 0) },
	[DDR_2400] = { .valid = true, .val = SSCG_PLL_CFG2(39, 29, 17, 1) },
	[DDR_1600] = { .valid = true, .val = SSCG_PLL_CFG2(39, 29, 11, 1) },
	[DDR_667]  = { .valid = true, .val = SSCG_PLL_CFG2(45, 30, 8, 3) }, /* ~166.935 MHz = 667.74 */
};

/* IMX8M Bypass clock config.  These configure dram_alt1_clk and the dram apb
 * clock.  For the bypass config, clock rate = DRAM tranfer rate, rather than
 * clock = dram / 4
 */

/* prediv is actual divider, register will be set to divider - 1 */
#define CCM_ROOT_CFG(mux, prediv) (IMX8M_CCM_TARGET_ROOTn_ENABLE | \
	IMX8M_CCM_TARGET_ROOTn_MUX(mux) | IMX8M_CCM_TARGET_ROOTn_PRE_DIV(prediv-1))

static const struct imx8m_bypass_config {
	uint32_t alt_clk;
	uint32_t apb_clk;
	bool valid;
} imx8m_bypass_table[DDR_NUM_RATES] = {
	[DDR_400] = { .valid = true, .alt_clk = CCM_ROOT_CFG(1, 2), .apb_clk = CCM_ROOT_CFG(3, 2) },
	[DDR_250] = { .valid = true, .alt_clk = CCM_ROOT_CFG(3, 2), .apb_clk = CCM_ROOT_CFG(2, 2) },
	[DDR_100] = { .valid = true, .alt_clk = CCM_ROOT_CFG(2, 1), .apb_clk = CCM_ROOT_CFG(2, 2) },
};

static void dram_enable_bypass(enum ddr_rate drate)
{
	const struct imx8m_bypass_config *config = &imx8m_bypass_table[drate];

	if (!config->valid) {
		pr_warn("No matched freq table entry %u\n", drate);
		return;
	}

	imx8m_clock_set_target_val(IMX8M_DRAM_ALT_CLK_ROOT, config->alt_clk);
	imx8m_clock_set_target_val(IMX8M_DRAM_APB_CLK_ROOT, config->apb_clk);
	imx8m_clock_set_target_val(IMX8M_DRAM_SEL_CFG, IMX8M_CCM_TARGET_ROOTn_ENABLE |
				   IMX8M_CCM_TARGET_ROOTn_MUX(1));
}

static void dram_disable_bypass(void)
{
	imx8m_clock_set_target_val(IMX8M_DRAM_SEL_CFG,
				   IMX8M_CCM_TARGET_ROOTn_ENABLE |
				   IMX8M_CCM_TARGET_ROOTn_MUX(0));
	imx8m_clock_set_target_val(IMX8M_DRAM_APB_CLK_ROOT,
				   IMX8M_CCM_TARGET_ROOTn_ENABLE |
				   IMX8M_CCM_TARGET_ROOTn_MUX(4) |
				   IMX8M_CCM_TARGET_ROOTn_PRE_DIV(5 - 1));
}

static int dram_frac_pll_init(enum ddr_rate drate)
{
	volatile int i;
	u32 tmp;
	void *pll_base;
	const struct imx8mm_fracpll_config *config = &imx8mm_fracpll_table[drate];

	if (!config->valid) {
		pr_warn("No matched freq table entry %u\n", drate);
		return -EINVAL;
	}

	setbits_le32(MX8M_GPC_BASE_ADDR + 0xec, 1 << 7);
	setbits_le32(MX8M_GPC_BASE_ADDR + 0xf8, 1 << 5);
	writel(0x8F000000UL, MX8M_SRC_BASE_ADDR + 0x1004);

	pll_base = IOMEM(MX8M_ANATOP_BASE_ADDR) + 0x50;

	/* Bypass clock and set lock to pll output lock */
	tmp = readl(pll_base);
	tmp |= BYPASS_MASK;
	writel(tmp, pll_base);

	/* Enable RST */
	tmp &= ~RST_MASK;
	writel(tmp, pll_base);

	writel(config->r1, pll_base + 4);
	writel(config->r2, pll_base + 8);

	for (i = 0; i < 1000; i++);

	/* Disable RST */
	tmp |= RST_MASK;
	writel(tmp, pll_base);

	/* Wait Lock*/
	while (!(readl(pll_base) & LOCK_STATUS));

	/* Bypass */
	tmp &= ~BYPASS_MASK;
	writel(tmp, pll_base);

	return 0;
}

static int dram_sscg_pll_init(enum ddr_rate drate)
{
	u32 val;
	void __iomem *pll_base = IOMEM(MX8M_ANATOP_BASE_ADDR) + 0x60;
	const struct imx8mq_ssgcpll_config *config = &imx8mq_ssgcpll_table[drate];

	if (!config->valid) {
		pr_warn("No matched freq table entry %u\n", drate);
		return -EINVAL;
	}

	/* Bypass */
	setbits_le32(pll_base, SSCG_PLL_BYPASS1 | SSCG_PLL_BYPASS2);

	val = readl(pll_base + 0x8);
	val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
		 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
		 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
		 SSCG_PLL_REF_DIVR2_MASK);
	val |= config->val;
	writel(val, pll_base + 0x8);

	/* Clear power down bit */
	clrbits_le32(pll_base, SSCG_PLL_PD);
	/* Enable PLL  */
	setbits_le32(pll_base, SSCG_PLL_DRAM_PLL_CLKE);

	/* Clear bypass */
	clrbits_le32(pll_base, SSCG_PLL_BYPASS1);
	udelay(100);
	clrbits_le32(pll_base, SSCG_PLL_BYPASS2);
	/* Wait lock */
	while (!(readl(pll_base) & SSCG_PLL_LOCK))
		;

	return 0;
}

static int dram_pll_init(enum ddr_rate drate, enum ddrc_type type)
{
	switch (type) {
	case DDRC_TYPE_MQ:
		return dram_sscg_pll_init(drate);
	case DDRC_TYPE_MM:
	case DDRC_TYPE_MN:
	case DDRC_TYPE_MP:
		return dram_frac_pll_init(drate);
	default:
		return -ENODEV;
	}
}

static void ddrphy_init_set_dfi_clk(struct dram_controller *dram, unsigned int drate_mhz)
{
	enum ddr_rate drate;

	switch (drate_mhz) {
	case 4000: drate = DDR_4000; break;
	case 3720: drate = DDR_3720; break;
	case 3200: drate = DDR_3200; break;
	case 3000: drate = DDR_3000; break;
	case 2600: drate = DDR_2600; break;
	case 2400: drate = DDR_2400; break;
	case 2376: drate = DDR_2376; break;
	case 1600: drate = DDR_1600; break;
	case 1066: drate = DDR_1066; break;
	case 667: drate = DDR_667; break;
	case 400: drate = DDR_400; break;
	case 100: drate = DDR_100; break;
	default:
		pr_warn("Unsupported frequency %u\n", drate_mhz);
		return;
	}

	if (drate_mhz > 400) {
		dram_pll_init(drate, dram->ddrc_type);
		dram_disable_bypass();
	} else {
		dram_enable_bypass(drate);
	}
}

/*
 * We store the timing parameters here. the TF-A will pick these up.
 * Note that the timing used we leave the driver with is a PLL bypass 25MHz
 * mode. So if your board runs horribly slow you'll likely have to provide a
 * TF-A binary.
 */
#define IMX8M_SAVED_DRAM_TIMING_BASE		0x180000

int imx8m_ddr_init(struct dram_controller *dram, struct dram_timing_info *dram_timing)
{
	unsigned long src_ddrc_rcr = MX8M_SRC_DDRC_RCR_ADDR;
	unsigned int tmp, initial_drate, target_freq;
	int ret;

	pr_debug("start DRAM init\n");

	dram->get_trained_CDD = get_trained_CDD;
	dram->set_dfi_clk = ddrphy_init_set_dfi_clk;

	/* Step1: Follow the power up procedure */
	switch (dram->ddrc_type) {
	case DDRC_TYPE_MQ:
		reg32_write(src_ddrc_rcr + 0x04, 0x8f00000f);
		reg32_write(src_ddrc_rcr, 0x8f00000f);
		reg32_write(src_ddrc_rcr + 0x04, 0x8f000000);
		break;
	case DDRC_TYPE_MM:
	case DDRC_TYPE_MN:
	case DDRC_TYPE_MP:
		reg32_write(src_ddrc_rcr, 0x8f00001f);
		reg32_write(src_ddrc_rcr, 0x8f00000f);
		break;
	}

	pr_debug("cfg clk\n");

	/* disable iso */
	reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */
	reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */

	initial_drate = dram_timing->fsp_msg[0].drate;
	/* default to the frequency point 0 clock */
	dram->set_dfi_clk(dram, initial_drate);

	/* D-aasert the presetn */
	reg32_write(src_ddrc_rcr, 0x8F000006);

	/* Step2: Program the dwc_ddr_umctl2 registers */
	pr_debug("ddrc config start\n");
	ddr_cfg_umctl2(dram, dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num);
	pr_debug("ddrc config done\n");

	/* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */
	reg32_write(src_ddrc_rcr, 0x8F000004);
	reg32_write(src_ddrc_rcr, 0x8F000000);

	/*
	 * Step4: Disable auto-refreshes, self-refresh, powerdown, and
	 * assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1,
	 * PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0,
	 * PWRCTL.en_dfi_dram_clk_disable = 0
	 */
	reg32_write(DDRC_DBG1(0), 0x00000000);
	reg32_write(DDRC_RFSHCTL3(0), 0x0000001);
	reg32_write(DDRC_PWRCTL(0), 0xa0);

	pr_debug("checking ddr type\n");
	/*
	 * below is first read, so if boot hangs here, imx8m*_early_clock_init()
	 * might not have been called
	 */
	tmp = reg32_read(DDRC_MSTR(0));
	if (tmp & (0x1 << 5) && dram->ddrc_type != DDRC_TYPE_MN)
		reg32_write(MX8M_DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */

	/* determine the initial boot frequency */
	target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3;
	target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0;

	/* Step5: Set SWCT.sw_done to 0 */
	reg32_write(DDRC_SWCTL(0), 0x00000000);

	/* Set the default boot frequency point */
	clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8);
	/* Step6: Set DFIMISC.dfi_init_complete_en to 0 */
	clrbits_le32(DDRC_DFIMISC(0), 0x1);

	/* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
	reg32_write(DDRC_SWCTL(0), 0x00000001);
	do {
		tmp = reg32_read(DDRC_SWSTAT(0));
	} while ((tmp & 0x1) == 0x0);

	/*
	 * Step8 ~ Step13: Start PHY initialization and training by
	 * accessing relevant PUB registers
	 */
	pr_debug("ddrphy config start\n");

	ret = ddr_cfg_phy(dram, dram_timing);
	if (ret)
		return ret;

	pr_debug("ddrphy config done\n");

	/*
	 * step14 CalBusy.0 =1, indicates the calibrator is actively
	 * calibrating. Wait Calibrating done.
	 */
	do {
		tmp = reg32_read(DDRPHY_CalBusy(0));
	} while ((tmp & 0x1));

	pr_debug("ddrphy calibration done\n");

	/* Step15: Set SWCTL.sw_done to 0 */
	reg32_write(DDRC_SWCTL(0), 0x00000000);

	/* Apply rank-to-rank workaround */
	update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1, dram->ddrc_type);

	/* Step16: Set DFIMISC.dfi_init_start to 1 */
	setbits_le32(DDRC_DFIMISC(0), (0x1 << 5));

	/* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
	reg32_write(DDRC_SWCTL(0), 0x00000001);
	do {
		tmp = reg32_read(DDRC_SWSTAT(0));
	} while ((tmp & 0x1) == 0x0);

	/* Step18: Polling DFISTAT.dfi_init_complete = 1 */
	do {
		tmp = reg32_read(DDRC_DFISTAT(0));
	} while ((tmp & 0x1) == 0x0);

	/* Step19: Set SWCTL.sw_done to 0 */
	reg32_write(DDRC_SWCTL(0), 0x00000000);

	/* Step20: Set DFIMISC.dfi_init_start to 0 */
	clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5));

	/* Step21: optional */

	/* Step22: Set DFIMISC.dfi_init_complete_en to 1 */
	setbits_le32(DDRC_DFIMISC(0), 0x1);

	/* Step23: Set PWRCTL.selfref_sw to 0 */
	clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5));

	/* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */
	reg32_write(DDRC_SWCTL(0), 0x00000001);
	do {
		tmp = reg32_read(DDRC_SWSTAT(0));
	} while ((tmp & 0x1) == 0x0);

	/* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring
	 * STAT.operating_mode signal */
	do {
		tmp = reg32_read(DDRC_STAT(0));
	} while ((tmp & 0x3) != 0x1);

	/* Step26: Set back register in Step4 to the original values if desired */
	reg32_write(DDRC_RFSHCTL3(0), 0x0000000);
	/* enable selfref_en by default */
	setbits_le32(DDRC_PWRCTL(0), 0x1);

	/* enable port 0 */
	reg32_write(DDRC_PCTRL_0(0), 0x00000001);
	pr_debug("ddrmix config done\n");

	/* save the dram timing config into memory */
	dram_config_save(dram, dram_timing, IMX8M_SAVED_DRAM_TIMING_BASE);

	return 0;
}