summaryrefslogtreecommitdiffstats
path: root/drivers/spi/stm32_spi.c
blob: 0cb04a968c8afb8d8abf569a5cf0e62852fcfd6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
 * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
 *
 * Driver for STMicroelectronics Serial peripheral interface (SPI)
 */

#include <common.h>
#include <linux/clk.h>
#include <driver.h>
#include <init.h>
#include <errno.h>
#include <linux/reset.h>
#include <spi/spi.h>
#include <linux/bitops.h>
#include <clock.h>
#include <gpio.h>
#include <of_gpio.h>
#include <linux/bitfield.h>
#include <linux/iopoll.h>

/* STM32 SPI registers */
#define STM32_SPI_CR1		0x00
#define STM32_SPI_CR2		0x04
#define STM32_SPI_CFG1		0x08
#define STM32_SPI_CFG2		0x0C
#define STM32_SPI_SR		0x14
#define STM32_SPI_IFCR		0x18
#define STM32_SPI_TXDR		0x20
#define STM32_SPI_RXDR		0x30
#define STM32_SPI_I2SCFGR	0x50

/* STM32_SPI_CR1 bit fields */
#define SPI_CR1_SPE		BIT(0)
#define SPI_CR1_MASRX		BIT(8)
#define SPI_CR1_CSTART		BIT(9)
#define SPI_CR1_CSUSP		BIT(10)
#define SPI_CR1_HDDIR		BIT(11)
#define SPI_CR1_SSI		BIT(12)

/* STM32_SPI_CR2 bit fields */
#define SPI_CR2_TSIZE		GENMASK(15, 0)

/* STM32_SPI_CFG1 bit fields */
#define SPI_CFG1_DSIZE		GENMASK(4, 0)
#define SPI_CFG1_DSIZE_MIN	3
#define SPI_CFG1_FTHLV_SHIFT	5
#define SPI_CFG1_FTHLV		GENMASK(8, 5)
#define SPI_CFG1_MBR_SHIFT	28
#define SPI_CFG1_MBR		GENMASK(30, 28)
#define SPI_CFG1_MBR_MIN	0
#define SPI_CFG1_MBR_MAX	FIELD_GET(SPI_CFG1_MBR, SPI_CFG1_MBR)

/* STM32_SPI_CFG2 bit fields */
#define SPI_CFG2_COMM_SHIFT	17
#define SPI_CFG2_COMM		GENMASK(18, 17)
#define SPI_CFG2_MASTER		BIT(22)
#define SPI_CFG2_LSBFRST	BIT(23)
#define SPI_CFG2_CPHA		BIT(24)
#define SPI_CFG2_CPOL		BIT(25)
#define SPI_CFG2_SSM		BIT(26)
#define SPI_CFG2_AFCNTR		BIT(31)

/* STM32_SPI_SR bit fields */
#define SPI_SR_RXP		BIT(0)
#define SPI_SR_TXP		BIT(1)
#define SPI_SR_EOT		BIT(3)
#define SPI_SR_TXTF		BIT(4)
#define SPI_SR_OVR		BIT(6)
#define SPI_SR_SUSP		BIT(11)
#define SPI_SR_RXPLVL_SHIFT	13
#define SPI_SR_RXPLVL		GENMASK(14, 13)
#define SPI_SR_RXWNE		BIT(15)

/* STM32_SPI_IFCR bit fields */
#define SPI_IFCR_ALL		GENMASK(11, 3)

/* STM32_SPI_I2SCFGR bit fields */
#define SPI_I2SCFGR_I2SMOD	BIT(0)

/* SPI Master Baud Rate min/max divisor */
#define STM32_MBR_DIV_MIN	(2 << SPI_CFG1_MBR_MIN)
#define STM32_MBR_DIV_MAX	(2 << SPI_CFG1_MBR_MAX)

/* SPI Communication mode */
#define SPI_FULL_DUPLEX		0
#define SPI_SIMPLEX_TX		1
#define SPI_SIMPLEX_RX		2
#define SPI_HALF_DUPLEX		3

struct stm32_spi_priv {
	struct spi_master	master;
	int			*cs_gpios;
	void __iomem		*base;
	struct clk		*clk;
	ulong			bus_clk_rate;
	unsigned int		fifo_size;
	unsigned int		cur_bpw;
	unsigned int		cur_hz;
	unsigned int		cur_xferlen;	/* current transfer length in bytes */
	unsigned int		tx_len;		/* number of data to be written in bytes */
	unsigned int		rx_len;		/* number of data to be read in bytes */
	const void		*tx_buf;	/* data to be written, or NULL */
	void			*rx_buf;	/* data to be read, or NULL */
	u32			cur_mode;
};

static inline struct stm32_spi_priv *to_stm32_spi_priv(struct spi_master *master)
{
	return container_of(master, struct stm32_spi_priv, master);
}

static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
{
	while ((priv->tx_len > 0) &&
	       (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)) {
		u32 offs = priv->cur_xferlen - priv->tx_len;

		if (priv->tx_len >= sizeof(u32) &&
		    IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u32))) {
			const u32 *tx_buf32 = (const u32 *)(priv->tx_buf + offs);

			writel(*tx_buf32, priv->base + STM32_SPI_TXDR);
			priv->tx_len -= sizeof(u32);
		} else if (priv->tx_len >= sizeof(u16) &&
			   IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u16))) {
			const u16 *tx_buf16 = (const u16 *)(priv->tx_buf + offs);

			writew(*tx_buf16, priv->base + STM32_SPI_TXDR);
			priv->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(priv->tx_buf + offs);

			writeb(*tx_buf8, priv->base + STM32_SPI_TXDR);
			priv->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(priv->master.dev, "%d bytes left\n", priv->tx_len);
}

static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
{
	u32 sr = readl(priv->base + STM32_SPI_SR);
	u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;

	while ((priv->rx_len > 0) &&
	       ((sr & SPI_SR_RXP) ||
	       ((sr & SPI_SR_EOT) && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
		u32 offs = priv->cur_xferlen - priv->rx_len;

		if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u32)) &&
		    (priv->rx_len >= sizeof(u32) || (sr & SPI_SR_RXWNE))) {
			u32 *rx_buf32 = (u32 *)(priv->rx_buf + offs);

			*rx_buf32 = readl(priv->base + STM32_SPI_RXDR);
			priv->rx_len -= sizeof(u32);
		} else if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u16)) &&
			   (priv->rx_len >= sizeof(u16) ||
			    (!(sr & SPI_SR_RXWNE) &&
			    (rxplvl >= 2 || priv->cur_bpw > 8)))) {
			u16 *rx_buf16 = (u16 *)(priv->rx_buf + offs);

			*rx_buf16 = readw(priv->base + STM32_SPI_RXDR);
			priv->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(priv->rx_buf + offs);

			*rx_buf8 = readb(priv->base + STM32_SPI_RXDR);
			priv->rx_len -= sizeof(u8);
		}

		sr = readl(priv->base + STM32_SPI_SR);
		rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
	}

	dev_dbg(priv->master.dev, "%d bytes left\n", priv->rx_len);
}

static void stm32_spi_enable(struct stm32_spi_priv *priv)
{
	setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
}

static void stm32_spi_disable(struct stm32_spi_priv *priv)
{
	clrbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
}

static void stm32_spi_stopxfer(struct stm32_spi_priv *priv)
{
	struct device_d *dev = priv->master.dev;
	u32 cr1, sr;
	int ret;

	dev_dbg(dev, "%s\n", __func__);

	cr1 = readl(priv->base + STM32_SPI_CR1);

	if (!(cr1 & SPI_CR1_SPE))
		return;

	/* Wait on EOT or suspend the flow */
	ret = readl_poll_timeout(priv->base + STM32_SPI_SR, sr,
				 !(sr & SPI_SR_EOT), USEC_PER_SEC);
	if (ret < 0) {
		if (cr1 & SPI_CR1_CSTART) {
			writel(cr1 | SPI_CR1_CSUSP, priv->base + STM32_SPI_CR1);
			if (readl_poll_timeout(priv->base + STM32_SPI_SR,
					       sr, !(sr & SPI_SR_SUSP),
					       100000) < 0)
				dev_err(dev, "Suspend request timeout\n");
		}
	}

	/* clear status flags */
	setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
}

static void stm32_spi_set_cs(struct spi_device *spi, bool en)
{
	struct stm32_spi_priv *priv = to_stm32_spi_priv(spi->master);
	int gpio = priv->cs_gpios[spi->chip_select];
	int ret = -EINVAL;

	dev_dbg(priv->master.dev, "cs=%d en=%d\n", gpio, en);

	if (gpio_is_valid(gpio))
		ret = gpio_direction_output(gpio, (spi->mode & SPI_CS_HIGH) ? en : !en);

	if (ret)
		dev_warn(priv->master.dev, "couldn't toggle cs#%u\n", spi->chip_select);
}

static void stm32_spi_set_mode(struct stm32_spi_priv *priv, unsigned mode)
{
	u32 cfg2_clrb = 0, cfg2_setb = 0;

	dev_dbg(priv->master.dev, "mode=%d\n", mode);

	if (mode & SPI_CPOL)
		cfg2_setb |= SPI_CFG2_CPOL;
	else
		cfg2_clrb |= SPI_CFG2_CPOL;

	if (mode & SPI_CPHA)
		cfg2_setb |= SPI_CFG2_CPHA;
	else
		cfg2_clrb |= SPI_CFG2_CPHA;

	if (mode & SPI_LSB_FIRST)
		cfg2_setb |= SPI_CFG2_LSBFRST;
	else
		cfg2_clrb |= SPI_CFG2_LSBFRST;

	if (cfg2_clrb || cfg2_setb)
		clrsetbits_le32(priv->base + STM32_SPI_CFG2,
				cfg2_clrb, cfg2_setb);
}

static void stm32_spi_set_fthlv(struct stm32_spi_priv *priv, u32 xfer_len)
{
	u32 fthlv, half_fifo;

	/* data packet should not exceed 1/2 of fifo space */
	half_fifo = (priv->fifo_size / 2);

	/* data_packet should not exceed transfer length */
	fthlv = (half_fifo > xfer_len) ? xfer_len : half_fifo;

	/* align packet size with data registers access */
	fthlv -= (fthlv % 4);

	if (!fthlv)
		fthlv = 1;
	clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
			(fthlv - 1) << SPI_CFG1_FTHLV_SHIFT);
}

static int stm32_spi_set_speed(struct stm32_spi_priv *priv, uint hz)
{
	u32 mbrdiv;
	long div;

	dev_dbg(priv->master.dev, "hz=%d\n", hz);

	if (priv->cur_hz == hz)
		return 0;

	div = DIV_ROUND_UP(priv->bus_clk_rate, hz);

	if (div < STM32_MBR_DIV_MIN || div > STM32_MBR_DIV_MAX)
		return -EINVAL;

	/* Determine the first power of 2 greater than or equal to div */
	if (div & (div - 1))
		mbrdiv = fls(div);
	else
		mbrdiv = fls(div) - 1;

	if (!mbrdiv)
		return -EINVAL;

	clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_MBR,
			(mbrdiv - 1) << SPI_CFG1_MBR_SHIFT);

	priv->cur_hz = hz;

	return 0;
}

static int stm32_spi_setup(struct spi_device *spi)
{
	struct stm32_spi_priv *priv = to_stm32_spi_priv(spi->master);
	int ret;

	stm32_spi_set_cs(spi, false);
	stm32_spi_enable(priv);

	stm32_spi_set_mode(priv, spi->mode);

	ret = stm32_spi_set_speed(priv, spi->max_speed_hz);
	if (ret)
		goto out;

	priv->cur_bpw = spi->bits_per_word;
	clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
			priv->cur_bpw - 1);

	dev_dbg(priv->master.dev, "%s mode 0x%08x bits_per_word: %d speed: %d\n",
		__func__, spi->mode, spi->bits_per_word,
		spi->max_speed_hz);
out:
	stm32_spi_disable(priv);
	return ret;
}

static int stm32_spi_transfer_one(struct stm32_spi_priv *priv,
				  struct spi_transfer *t)
{
	struct device_d *dev = priv->master.dev;
	u32 sr;
	u32 ifcr = 0;
	u32 mode;
	int xfer_status = 0;

	if (t->len <= SPI_CR2_TSIZE)
		writel(t->len, priv->base + STM32_SPI_CR2);
	else
		return -EMSGSIZE;

	priv->tx_buf = t->tx_buf;
	priv->rx_buf = t->rx_buf;
	priv->tx_len = priv->tx_buf ? t->len : 0;
	priv->rx_len = priv->rx_buf ? t->len : 0;

	mode = SPI_FULL_DUPLEX;
	if (!priv->tx_buf)
		mode = SPI_SIMPLEX_RX;
	else if (!priv->rx_buf)
		mode = SPI_SIMPLEX_TX;

	if (priv->cur_xferlen != t->len || priv->cur_mode != mode) {
		priv->cur_mode = mode;
		priv->cur_xferlen = t->len;

		/* Disable the SPI hardware to unlock CFG1/CFG2 registers */
		stm32_spi_disable(priv);

		clrsetbits_le32(priv->base + STM32_SPI_CFG2, SPI_CFG2_COMM,
				mode << SPI_CFG2_COMM_SHIFT);

		stm32_spi_set_fthlv(priv, t->len);

		/* Enable the SPI hardware */
		stm32_spi_enable(priv);
	}

	dev_dbg(dev, "priv->tx_len=%d priv->rx_len=%d\n",
		priv->tx_len, priv->rx_len);

	/* Be sure to have data in fifo before starting data transfer */
	if (priv->tx_buf)
		stm32_spi_write_txfifo(priv);

	setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_CSTART);

	while (1) {
		sr = readl(priv->base + STM32_SPI_SR);

		if (sr & SPI_SR_OVR) {
			dev_err(dev, "Overrun: RX data lost\n");
			xfer_status = -EIO;
			break;
		}

		if (sr & SPI_SR_SUSP) {
			dev_warn(dev, "System too slow is limiting data throughput\n");

			if (priv->rx_buf && priv->rx_len > 0)
				stm32_spi_read_rxfifo(priv);

			ifcr |= SPI_SR_SUSP;
		}

		if (sr & SPI_SR_TXTF)
			ifcr |= SPI_SR_TXTF;

		if (sr & SPI_SR_TXP)
			if (priv->tx_buf && priv->tx_len > 0)
				stm32_spi_write_txfifo(priv);

		if (sr & SPI_SR_RXP)
			if (priv->rx_buf && priv->rx_len > 0)
				stm32_spi_read_rxfifo(priv);

		if (sr & SPI_SR_EOT) {
			if (priv->rx_buf && priv->rx_len > 0)
				stm32_spi_read_rxfifo(priv);
			break;
		}

		writel(ifcr, priv->base + STM32_SPI_IFCR);
	}

	/* clear status flags */
	setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
	stm32_spi_stopxfer(priv);

	return xfer_status;
}

static int stm32_spi_transfer(struct spi_device *spi, struct spi_message *mesg)
{
	struct stm32_spi_priv *priv = to_stm32_spi_priv(spi->master);
	struct spi_transfer *t;
	unsigned int cs_change;
	const int nsecs = 50;
	int ret = 0;

	stm32_spi_enable(priv);

	stm32_spi_set_cs(spi, true);

	cs_change = 0;

	mesg->actual_length = 0;

	list_for_each_entry(t, &mesg->transfers, transfer_list) {
		if (cs_change) {
			ndelay(nsecs);
			stm32_spi_set_cs(spi, false);
			ndelay(nsecs);
			stm32_spi_set_cs(spi, true);
		}

		cs_change = t->cs_change;

		ret = stm32_spi_transfer_one(priv, t);
		if (ret)
			goto out;

		mesg->actual_length += t->len;

		if (cs_change)
			stm32_spi_set_cs(spi, true);
	}

	if (!cs_change)
		stm32_spi_set_cs(spi, false);

out:
	stm32_spi_disable(priv);
	return ret;
}

static int stm32_spi_get_fifo_size(struct stm32_spi_priv *priv)
{
	u32 count = 0;

	stm32_spi_enable(priv);

	while (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)
		writeb(++count, priv->base + STM32_SPI_TXDR);

	stm32_spi_disable(priv);

	dev_dbg(priv->master.dev, "%d x 8-bit fifo size\n", count);

	return count;
}

static void stm32_spi_dt_probe(struct stm32_spi_priv *priv)
{
	struct device_node *node = priv->master.dev->device_node;
	int i;

	priv->master.num_chipselect = of_gpio_named_count(node, "cs-gpios");
	priv->cs_gpios = xzalloc(sizeof(u32) * priv->master.num_chipselect);

	for (i = 0; i < priv->master.num_chipselect; i++)
		priv->cs_gpios[i] = of_get_named_gpio(node, "cs-gpios", i);
}

static int stm32_spi_probe(struct device_d *dev)
{
	struct resource *iores;
	struct spi_master *master;
	struct stm32_spi_priv *priv;
	int ret;

	iores = dev_request_mem_resource(dev, 0);
	if (IS_ERR(iores))
		return PTR_ERR(iores);

	priv = dev->priv = xzalloc(sizeof(*priv));

	priv->base = IOMEM(iores->start);

	master = &priv->master;
	master->dev = dev;

	master->setup = stm32_spi_setup;
	master->transfer = stm32_spi_transfer;

	master->bus_num = -1;
	stm32_spi_dt_probe(priv);

	priv->clk = clk_get(dev, NULL);
	if (IS_ERR(priv->clk))
		return PTR_ERR(priv->clk);

	ret = clk_enable(priv->clk);
	if (ret)
		return ret;

	priv->bus_clk_rate = clk_get_rate(priv->clk);

	ret = device_reset_us(dev, 2);
	if (ret)
		return ret;

	priv->fifo_size = stm32_spi_get_fifo_size(priv);

	priv->cur_mode = SPI_FULL_DUPLEX;
	priv->cur_xferlen = 0;

	/* Ensure I2SMOD bit is kept cleared */
	clrbits_le32(priv->base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - automatic communication suspend when RX-Fifo is full
	 */
	setbits_le32(priv->base + STM32_SPI_CR1,
		     SPI_CR1_SSI | SPI_CR1_HDDIR | SPI_CR1_MASRX);

	/*
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 * - keep control of all associated GPIOs
	 */
	setbits_le32(priv->base + STM32_SPI_CFG2,
		     SPI_CFG2_MASTER | SPI_CFG2_SSM | SPI_CFG2_AFCNTR);

	return spi_register_master(master);
}

static void stm32_spi_remove(struct device_d *dev)
{
	struct stm32_spi_priv *priv = dev->priv;

	stm32_spi_stopxfer(priv);
	stm32_spi_disable(priv);
};

static const struct of_device_id stm32_spi_ids[] = {
	{ .compatible = "st,stm32h7-spi", },
	{ /* sentinel */ }
};

static struct driver_d stm32_spi_driver = {
	.name  = "stm32_spi",
	.probe = stm32_spi_probe,
	.remove = stm32_spi_remove,
	.of_compatible = stm32_spi_ids,
};
coredevice_platform_driver(stm32_spi_driver);