summaryrefslogtreecommitdiffstats
path: root/arch/arm64/lib/Makefile
Commit message (Collapse)AuthorAgeFilesLines
* arm64: avoid instrumenting atomic_ll_sc.oMark Rutland2018-04-271-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | Our out-of-line atomics are built with a special calling convention, preventing pointless stack spilling, and allowing us to patch call sites with ARMv8.1 atomic instructions. Instrumentation inserted by the compiler may result in calls to functions not following this special calling convention, resulting in registers being unexpectedly clobbered, and various problems resulting from this. For example, if a kernel is built with KCOV and ARM64_LSE_ATOMICS, the compiler inserts calls to __sanitizer_cov_trace_pc in the prologues of the atomic functions. This has been observed to result in spurious cmpxchg failures, leading to a hang early on in the boot process. This patch avoids such issues by preventing instrumentation of our out-of-line atomics. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
* arm64: lse: Pass -fomit-frame-pointer to out-of-line ll/sc atomicsWill Deacon2018-03-061-1/+2
| | | | | | | | | | | | In cases where x30 is used as a temporary in the out-of-line ll/sc atomics (e.g. atomic_fetch_add), the compiler tends to put out a full stackframe, which included pointing the x29 at the new frame. Since these things aren't traceable anyway, we can pass -fomit-frame-pointer to reduce the work when spilling. Since this is incompatible with -pg, we also remove that from the CFLAGS for this file. Signed-off-by: Will Deacon <will.deacon@arm.com>
* Merge tag 'arm64-upstream' of ↵Linus Torvalds2017-11-151-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The big highlight is support for the Scalable Vector Extension (SVE) which required extensive ABI work to ensure we don't break existing applications by blowing away their signal stack with the rather large new vector context (<= 2 kbit per vector register). There's further work to be done optimising things like exception return, but the ABI is solid now. Much of the line count comes from some new PMU drivers we have, but they're pretty self-contained and I suspect we'll have more of them in future. Plenty of acronym soup here: - initial support for the Scalable Vector Extension (SVE) - improved handling for SError interrupts (required to handle RAS events) - enable GCC support for 128-bit integer types - remove kernel text addresses from backtraces and register dumps - use of WFE to implement long delay()s - ACPI IORT updates from Lorenzo Pieralisi - perf PMU driver for the Statistical Profiling Extension (SPE) - perf PMU driver for Hisilicon's system PMUs - misc cleanups and non-critical fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits) arm64: Make ARMV8_DEPRECATED depend on SYSCTL arm64: Implement __lshrti3 library function arm64: support __int128 on gcc 5+ arm64/sve: Add documentation arm64/sve: Detect SVE and activate runtime support arm64/sve: KVM: Hide SVE from CPU features exposed to guests arm64/sve: KVM: Treat guest SVE use as undefined instruction execution arm64/sve: KVM: Prevent guests from using SVE arm64/sve: Add sysctl to set the default vector length for new processes arm64/sve: Add prctl controls for userspace vector length management arm64/sve: ptrace and ELF coredump support arm64/sve: Preserve SVE registers around EFI runtime service calls arm64/sve: Preserve SVE registers around kernel-mode NEON use arm64/sve: Probe SVE capabilities and usable vector lengths arm64: cpufeature: Move sys_caps_initialised declarations arm64/sve: Backend logic for setting the vector length arm64/sve: Signal handling support arm64/sve: Support vector length resetting for new processes arm64/sve: Core task context handling arm64/sve: Low-level CPU setup ...
| * arm64: support __int128 on gcc 5+Jason A. Donenfeld2017-11-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Versions of gcc prior to gcc 5 emitted a __multi3 function call when dealing with TI types, resulting in failures when trying to link to libgcc, and more generally, bad performance. However, since gcc 5, the compiler supports actually emitting fast instructions, which means we can at long last enable this option and receive the speedups. The gcc commit that added proper Aarch64 support is: https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=d1ae7bb994f49316f6f63e6173f2931e837a351d This commit appears to be part of the gcc 5 release. There are still a few instructions, __ashlti3 and __ashrti3, which require libgcc, which is fine. Rather than linking to libgcc, we simply provide them ourselves, since they're not that complicated. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
* | License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* arm64: uaccess: Implement *_flushcache variantsRobin Murphy2017-08-091-0/+2
| | | | | | | | | Implement the set of copy functions with guarantees of a clean cache upon completion necessary to support the pmem driver. Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: lse: deal with clobbered IP registers after branch via PLTArd Biesheuvel2016-02-261-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The LSE atomics implementation uses runtime patching to patch in calls to out of line non-LSE atomics implementations on cores that lack hardware support for LSE. To avoid paying the overhead cost of a function call even if no call ends up being made, the bl instruction is kept invisible to the compiler, and the out of line implementations preserve all registers, not just the ones that they are required to preserve as per the AAPCS64. However, commit fd045f6cd98e ("arm64: add support for module PLTs") added support for routing branch instructions via veneers if the branch target offset exceeds the range of the ordinary relative branch instructions. Since this deals with jump and call instructions that are exposed to ELF relocations, the PLT code uses x16 to hold the address of the branch target when it performs an indirect branch-to-register, something which is explicitly allowed by the AAPCS64 (and ordinary compiler generated code does not expect register x16 or x17 to retain their values across a bl instruction). Since the lse runtime patched bl instructions don't adhere to the AAPCS64, they don't deal with this clobbering of registers x16 and x17. So add them to the clobber list of the asm() statements that perform the call instructions, and drop x16 and x17 from the list of registers that are callee saved in the out of line non-LSE implementations. In addition, since we have given these functions two scratch registers, they no longer need to stack/unstack temp registers. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [will: factored clobber list into #define, updated Makefile comment] Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: introduce CONFIG_ARM64_LSE_ATOMICS as fallback to ll/sc atomicsWill Deacon2015-07-271-0/+13
| | | | | | | | | | | | | | | In order to patch in the new atomic instructions at runtime, we need to generate wrappers around the out-of-line exclusive load/store atomics. This patch adds a new Kconfig option, CONFIG_ARM64_LSE_ATOMICS. which causes our atomic functions to branch to the out-of-line ll/sc implementations. To avoid the register spill overhead of the PCS, the out-of-line functions are compiled with specific compiler flags to force out-of-line save/restore of any registers that are usually caller-saved. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
* arm64: lib: Implement optimized string length routineszhichang.yuan2014-05-231-1/+2
| | | | | | | | | This patch, based on Linaro's Cortex Strings library, adds an assembly optimized strlen() and strnlen() functions. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: lib: Implement optimized string compare routineszhichang.yuan2014-05-231-1/+1
| | | | | | | | | This patch, based on Linaro's Cortex Strings library, adds an assembly optimized strcmp() and strncmp() functions. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: lib: Implement optimized memcmp routinezhichang.yuan2014-05-231-1/+1
| | | | | | | | | This patch, based on Linaro's Cortex Strings library, adds an assembly optimized memcmp() function. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: use generic strnlen_user and strncpy_from_user functionsWill Deacon2013-12-191-5/+3
| | | | | | | | | | | | | This patch implements the word-at-a-time interface for arm64 using the same algorithm as ARM. We use the fls64 macro, which expands to a clz instruction via a compiler builtin. Big-endian configurations make use of the implementation from asm-generic. With this implemented, we can replace our byte-at-a-time strnlen_user and strncpy_from_user functions with the optimised generic versions. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: klib: Optimised string functionsCatalin Marinas2013-03-211-1/+2
| | | | | | | This patch introduces AArch64-specific string functions (strchr, strrchr). Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: klib: Optimised memory functionsCatalin Marinas2013-03-211-1/+2
| | | | | | | | | This patch introduces AArch64-specific memory functions (memcpy, memmove, memchr, memset). These functions are not optimised for any CPU implementation but can be used as a starting point once hardware is available. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: Miscellaneous library functionsMarc Zyngier2012-09-171-0/+4
This patch adds udelay, memory and bit operations together with the ksyms exports. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Tony Lindgren <tony@atomide.com> Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>