summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_trans_ail.c
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2011-04-08 12:45:07 +1000
committerDave Chinner <david@fromorbit.com>2011-04-08 12:45:07 +1000
commitfd074841cfe01b006465fb9388091012585e8dfb (patch)
tree7ec409fade00b6c18987e1cb2a62443c074ce274 /fs/xfs/xfs_trans_ail.c
parentcd4a3c503c185f5f0a20f04f90da0a6966dd03bd (diff)
downloadlinux-fd074841cfe01b006465fb9388091012585e8dfb.tar.gz
linux-fd074841cfe01b006465fb9388091012585e8dfb.tar.xz
xfs: push the AIL from memory reclaim and periodic sync
When we are short on memory, we want to expedite the cleaning of dirty objects. Hence when we run short on memory, we need to kick the AIL flushing into action to clean as many dirty objects as quickly as possible. To implement this, sample the lsn of the log item at the head of the AIL and use that as the push target for the AIL flush. Further, we keep items in the AIL that are dirty that are not tracked any other way, so we can get objects sitting in the AIL that don't get written back until the AIL is pushed. Hence to get the filesystem to the idle state, we might need to push the AIL to flush out any remaining dirty objects sitting in the AIL. This requires the same push mechanism as the reclaim push. This patch also renames xfs_trans_ail_tail() to xfs_ail_min_lsn() to match the new xfs_ail_max_lsn() function introduced in this patch. Similarly for xfs_trans_ail_push -> xfs_ail_push. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Alex Elder <aelder@sgi.com>
Diffstat (limited to 'fs/xfs/xfs_trans_ail.c')
-rw-r--r--fs/xfs/xfs_trans_ail.c50
1 files changed, 48 insertions, 2 deletions
diff --git a/fs/xfs/xfs_trans_ail.c b/fs/xfs/xfs_trans_ail.c
index 8012bfbc6dc0..acdb92f14d51 100644
--- a/fs/xfs/xfs_trans_ail.c
+++ b/fs/xfs/xfs_trans_ail.c
@@ -90,6 +90,20 @@ xfs_ail_min(
return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
}
+ /*
+ * Return a pointer to the last item in the AIL. If the AIL is empty, then
+ * return NULL.
+ */
+static xfs_log_item_t *
+xfs_ail_max(
+ struct xfs_ail *ailp)
+{
+ if (list_empty(&ailp->xa_ail))
+ return NULL;
+
+ return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
+}
+
/*
* Return a pointer to the item which follows the given item in the AIL. If
* the given item is the last item in the list, then return NULL.
@@ -114,7 +128,7 @@ xfs_ail_next(
* item in the AIL.
*/
xfs_lsn_t
-xfs_trans_ail_tail(
+xfs_ail_min_lsn(
struct xfs_ail *ailp)
{
xfs_lsn_t lsn = 0;
@@ -130,6 +144,25 @@ xfs_trans_ail_tail(
}
/*
+ * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
+ */
+static xfs_lsn_t
+xfs_ail_max_lsn(
+ struct xfs_ail *ailp)
+{
+ xfs_lsn_t lsn = 0;
+ xfs_log_item_t *lip;
+
+ spin_lock(&ailp->xa_lock);
+ lip = xfs_ail_max(ailp);
+ if (lip)
+ lsn = lip->li_lsn;
+ spin_unlock(&ailp->xa_lock);
+
+ return lsn;
+}
+
+/*
* AIL traversal cursor initialisation.
*
* The cursor keeps track of where our current traversal is up
@@ -504,7 +537,7 @@ xfs_ail_worker(
* any of the objects, so the lock is not needed.
*/
void
-xfs_trans_ail_push(
+xfs_ail_push(
struct xfs_ail *ailp,
xfs_lsn_t threshold_lsn)
{
@@ -526,6 +559,19 @@ xfs_trans_ail_push(
}
/*
+ * Push out all items in the AIL immediately
+ */
+void
+xfs_ail_push_all(
+ struct xfs_ail *ailp)
+{
+ xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
+
+ if (threshold_lsn)
+ xfs_ail_push(ailp, threshold_lsn);
+}
+
+/*
* This is to be called when an item is unlocked that may have
* been in the AIL. It will wake up the first member of the AIL
* wait list if this item's unlocking might allow it to progress.