summaryrefslogtreecommitdiffstats
path: root/patches/linux-3.7/0104-f2fs-add-checkpoint-operations.patch
diff options
context:
space:
mode:
Diffstat (limited to 'patches/linux-3.7/0104-f2fs-add-checkpoint-operations.patch')
-rw-r--r--patches/linux-3.7/0104-f2fs-add-checkpoint-operations.patch833
1 files changed, 833 insertions, 0 deletions
diff --git a/patches/linux-3.7/0104-f2fs-add-checkpoint-operations.patch b/patches/linux-3.7/0104-f2fs-add-checkpoint-operations.patch
new file mode 100644
index 0000000..0bbb10b
--- /dev/null
+++ b/patches/linux-3.7/0104-f2fs-add-checkpoint-operations.patch
@@ -0,0 +1,833 @@
+From: ??? <jaegeuk.kim@samsung.com>
+Date: Tue, 23 Oct 2012 02:28:03 +0000
+Subject: [PATCH] f2fs: add checkpoint operations
+
+This adds functions required by the checkpoint operations.
+
+Basically, f2fs adopts a roll-back model with checkpoint blocks written in the
+CP area. The checkpoint procedure includes as follows.
+
+- write_checkpoint()
+1. block_operations() freezes VFS calls.
+2. submit cached bios.
+3. flush_nat_entries() writes NAT pages updated by dirty NAT entries.
+4. flush_sit_entries() writes SIT pages updated by dirty SIT entries.
+5. do_checkpoint() writes,
+ - checkpoint block (#0)
+ - orphan inode blocks
+ - summary blocks made by active logs
+ - checkpoint block (copy of #0)
+6. unblock_opeations()
+
+In order to provide an address space for meta pages, f2fs_sb_info has a special
+inode, namely meta_inode. This patch also adds the address space operations for
+meta_inode.
+
+Signed-off-by: Chul Lee <chur.lee@samsung.com>
+Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
+---
+ fs/f2fs/checkpoint.c | 795 ++++++++++++++++++++++++++++++++++++++++++++++++++
+ 1 file changed, 795 insertions(+)
+ create mode 100644 fs/f2fs/checkpoint.c
+
+diff --git a/fs/f2fs/checkpoint.c b/fs/f2fs/checkpoint.c
+new file mode 100644
+index 0000000..a0601cc
+--- /dev/null
++++ b/fs/f2fs/checkpoint.c
+@@ -0,0 +1,795 @@
++/**
++ * fs/f2fs/checkpoint.c
++ *
++ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
++ * http://www.samsung.com/
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ */
++#include <linux/fs.h>
++#include <linux/bio.h>
++#include <linux/mpage.h>
++#include <linux/writeback.h>
++#include <linux/blkdev.h>
++#include <linux/f2fs_fs.h>
++#include <linux/pagevec.h>
++#include <linux/swap.h>
++
++#include "f2fs.h"
++#include "node.h"
++#include "segment.h"
++
++static struct kmem_cache *orphan_entry_slab;
++static struct kmem_cache *inode_entry_slab;
++
++/**
++ * We guarantee no failure on the returned page.
++ */
++struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
++{
++ struct address_space *mapping = sbi->meta_inode->i_mapping;
++ struct page *page = NULL;
++repeat:
++ page = grab_cache_page(mapping, index);
++ if (!page) {
++ cond_resched();
++ goto repeat;
++ }
++
++ /* We wait writeback only inside grab_meta_page() */
++ wait_on_page_writeback(page);
++ SetPageUptodate(page);
++ return page;
++}
++
++/**
++ * We guarantee no failure on the returned page.
++ */
++struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
++{
++ struct address_space *mapping = sbi->meta_inode->i_mapping;
++ struct page *page;
++repeat:
++ page = grab_cache_page(mapping, index);
++ if (!page) {
++ cond_resched();
++ goto repeat;
++ }
++ if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
++ f2fs_put_page(page, 1);
++ goto repeat;
++ }
++ mark_page_accessed(page);
++
++ /* We do not allow returning an errorneous page */
++ return page;
++}
++
++static int f2fs_write_meta_page(struct page *page,
++ struct writeback_control *wbc)
++{
++ struct inode *inode = page->mapping->host;
++ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
++ int err;
++
++ wait_on_page_writeback(page);
++
++ err = write_meta_page(sbi, page, wbc);
++ if (err) {
++ wbc->pages_skipped++;
++ set_page_dirty(page);
++ }
++
++ dec_page_count(sbi, F2FS_DIRTY_META);
++
++ /* In this case, we should not unlock this page */
++ if (err != AOP_WRITEPAGE_ACTIVATE)
++ unlock_page(page);
++ return err;
++}
++
++static int f2fs_write_meta_pages(struct address_space *mapping,
++ struct writeback_control *wbc)
++{
++ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
++ struct block_device *bdev = sbi->sb->s_bdev;
++ long written;
++
++ if (wbc->for_kupdate)
++ return 0;
++
++ if (get_pages(sbi, F2FS_DIRTY_META) == 0)
++ return 0;
++
++ /* if mounting is failed, skip writing node pages */
++ mutex_lock(&sbi->cp_mutex);
++ written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
++ mutex_unlock(&sbi->cp_mutex);
++ wbc->nr_to_write -= written;
++ return 0;
++}
++
++long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
++ long nr_to_write)
++{
++ struct address_space *mapping = sbi->meta_inode->i_mapping;
++ pgoff_t index = 0, end = LONG_MAX;
++ struct pagevec pvec;
++ long nwritten = 0;
++ struct writeback_control wbc = {
++ .for_reclaim = 0,
++ };
++
++ pagevec_init(&pvec, 0);
++
++ while (index <= end) {
++ int i, nr_pages;
++ nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
++ PAGECACHE_TAG_DIRTY,
++ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
++ if (nr_pages == 0)
++ break;
++
++ for (i = 0; i < nr_pages; i++) {
++ struct page *page = pvec.pages[i];
++ lock_page(page);
++ BUG_ON(page->mapping != mapping);
++ BUG_ON(!PageDirty(page));
++ clear_page_dirty_for_io(page);
++ f2fs_write_meta_page(page, &wbc);
++ if (nwritten++ >= nr_to_write)
++ break;
++ }
++ pagevec_release(&pvec);
++ cond_resched();
++ }
++
++ if (nwritten)
++ f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
++
++ return nwritten;
++}
++
++static int f2fs_set_meta_page_dirty(struct page *page)
++{
++ struct address_space *mapping = page->mapping;
++ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
++
++ SetPageUptodate(page);
++ if (!PageDirty(page)) {
++ __set_page_dirty_nobuffers(page);
++ inc_page_count(sbi, F2FS_DIRTY_META);
++ F2FS_SET_SB_DIRT(sbi);
++ return 1;
++ }
++ return 0;
++}
++
++const struct address_space_operations f2fs_meta_aops = {
++ .writepage = f2fs_write_meta_page,
++ .writepages = f2fs_write_meta_pages,
++ .set_page_dirty = f2fs_set_meta_page_dirty,
++};
++
++int check_orphan_space(struct f2fs_sb_info *sbi)
++{
++ unsigned int max_orphans;
++ int err = 0;
++
++ /*
++ * considering 512 blocks in a segment 5 blocks are needed for cp
++ * and log segment summaries. Remaining blocks are used to keep
++ * orphan entries with the limitation one reserved segment
++ * for cp pack we can have max 1020*507 orphan entries
++ */
++ max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
++ mutex_lock(&sbi->orphan_inode_mutex);
++ if (sbi->n_orphans >= max_orphans)
++ err = -ENOSPC;
++ mutex_unlock(&sbi->orphan_inode_mutex);
++ return err;
++}
++
++void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
++{
++ struct list_head *head, *this;
++ struct orphan_inode_entry *new = NULL, *orphan = NULL;
++
++ mutex_lock(&sbi->orphan_inode_mutex);
++ head = &sbi->orphan_inode_list;
++ list_for_each(this, head) {
++ orphan = list_entry(this, struct orphan_inode_entry, list);
++ if (orphan->ino == ino)
++ goto out;
++ if (orphan->ino > ino)
++ break;
++ orphan = NULL;
++ }
++retry:
++ new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
++ if (!new) {
++ cond_resched();
++ goto retry;
++ }
++ new->ino = ino;
++ INIT_LIST_HEAD(&new->list);
++
++ /* add new_oentry into list which is sorted by inode number */
++ if (orphan) {
++ struct orphan_inode_entry *prev;
++
++ /* get previous entry */
++ prev = list_entry(orphan->list.prev, typeof(*prev), list);
++ if (&prev->list != head)
++ /* insert new orphan inode entry */
++ list_add(&new->list, &prev->list);
++ else
++ list_add(&new->list, head);
++ } else {
++ list_add_tail(&new->list, head);
++ }
++ sbi->n_orphans++;
++out:
++ mutex_unlock(&sbi->orphan_inode_mutex);
++}
++
++void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
++{
++ struct list_head *this, *next, *head;
++ struct orphan_inode_entry *orphan;
++
++ mutex_lock(&sbi->orphan_inode_mutex);
++ head = &sbi->orphan_inode_list;
++ list_for_each_safe(this, next, head) {
++ orphan = list_entry(this, struct orphan_inode_entry, list);
++ if (orphan->ino == ino) {
++ list_del(&orphan->list);
++ kmem_cache_free(orphan_entry_slab, orphan);
++ sbi->n_orphans--;
++ break;
++ }
++ }
++ mutex_unlock(&sbi->orphan_inode_mutex);
++}
++
++static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
++{
++ struct inode *inode = f2fs_iget(sbi->sb, ino);
++ BUG_ON(IS_ERR(inode));
++ clear_nlink(inode);
++
++ /* truncate all the data during iput */
++ iput(inode);
++}
++
++int recover_orphan_inodes(struct f2fs_sb_info *sbi)
++{
++ block_t start_blk, orphan_blkaddr, i, j;
++
++ if (!(F2FS_CKPT(sbi)->ckpt_flags & CP_ORPHAN_PRESENT_FLAG))
++ return 0;
++
++ sbi->por_doing = 1;
++ start_blk = __start_cp_addr(sbi) + 1;
++ orphan_blkaddr = __start_sum_addr(sbi) - 1;
++
++ for (i = 0; i < orphan_blkaddr; i++) {
++ struct page *page = get_meta_page(sbi, start_blk + i);
++ struct f2fs_orphan_block *orphan_blk;
++
++ orphan_blk = (struct f2fs_orphan_block *)page_address(page);
++ for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
++ nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
++ recover_orphan_inode(sbi, ino);
++ }
++ f2fs_put_page(page, 1);
++ }
++ /* clear Orphan Flag */
++ F2FS_CKPT(sbi)->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
++ sbi->por_doing = 0;
++ return 0;
++}
++
++static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
++{
++ struct list_head *head, *this, *next;
++ struct f2fs_orphan_block *orphan_blk = NULL;
++ struct page *page = NULL;
++ unsigned int nentries = 0;
++ unsigned short index = 1;
++ unsigned short orphan_blocks;
++
++ orphan_blocks = (unsigned short)((sbi->n_orphans +
++ (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
++
++ mutex_lock(&sbi->orphan_inode_mutex);
++ head = &sbi->orphan_inode_list;
++
++ /* loop for each orphan inode entry and write them in Jornal block */
++ list_for_each_safe(this, next, head) {
++ struct orphan_inode_entry *orphan;
++
++ orphan = list_entry(this, struct orphan_inode_entry, list);
++
++ if (nentries == F2FS_ORPHANS_PER_BLOCK) {
++ /*
++ * an orphan block is full of 1020 entries,
++ * then we need to flush current orphan blocks
++ * and bring another one in memory
++ */
++ orphan_blk->blk_addr = cpu_to_le16(index);
++ orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
++ orphan_blk->entry_count = cpu_to_le32(nentries);
++ set_page_dirty(page);
++ f2fs_put_page(page, 1);
++ index++;
++ start_blk++;
++ nentries = 0;
++ page = NULL;
++ }
++ if (page)
++ goto page_exist;
++
++ page = grab_meta_page(sbi, start_blk);
++ orphan_blk = (struct f2fs_orphan_block *)page_address(page);
++ memset(orphan_blk, 0, sizeof(*orphan_blk));
++page_exist:
++ orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
++ }
++ if (!page)
++ goto end;
++
++ orphan_blk->blk_addr = cpu_to_le16(index);
++ orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
++ orphan_blk->entry_count = cpu_to_le32(nentries);
++ set_page_dirty(page);
++ f2fs_put_page(page, 1);
++end:
++ mutex_unlock(&sbi->orphan_inode_mutex);
++}
++
++static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
++ block_t cp_addr, unsigned long long *version)
++{
++ struct page *cp_page_1, *cp_page_2 = NULL;
++ unsigned long blk_size = sbi->blocksize;
++ struct f2fs_checkpoint *cp_block;
++ unsigned long long cur_version = 0, pre_version = 0;
++ unsigned int crc = 0;
++ size_t crc_offset;
++
++ /* Read the 1st cp block in this CP pack */
++ cp_page_1 = get_meta_page(sbi, cp_addr);
++
++ /* get the version number */
++ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
++ crc_offset = le32_to_cpu(cp_block->checksum_offset);
++ if (crc_offset >= blk_size)
++ goto invalid_cp1;
++
++ crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
++ if (!f2fs_crc_valid(crc, cp_block, crc_offset))
++ goto invalid_cp1;
++
++ pre_version = le64_to_cpu(cp_block->checkpoint_ver);
++
++ /* Read the 2nd cp block in this CP pack */
++ cp_addr += le64_to_cpu(cp_block->cp_pack_total_block_count) - 1;
++ cp_page_2 = get_meta_page(sbi, cp_addr);
++
++ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
++ crc_offset = le32_to_cpu(cp_block->checksum_offset);
++ if (crc_offset >= blk_size)
++ goto invalid_cp2;
++
++ crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
++ if (!f2fs_crc_valid(crc, cp_block, crc_offset))
++ goto invalid_cp2;
++
++ cur_version = le64_to_cpu(cp_block->checkpoint_ver);
++
++ if (cur_version == pre_version) {
++ *version = cur_version;
++ f2fs_put_page(cp_page_2, 1);
++ return cp_page_1;
++ }
++invalid_cp2:
++ f2fs_put_page(cp_page_2, 1);
++invalid_cp1:
++ f2fs_put_page(cp_page_1, 1);
++ return NULL;
++}
++
++int get_valid_checkpoint(struct f2fs_sb_info *sbi)
++{
++ struct f2fs_checkpoint *cp_block;
++ struct f2fs_super_block *fsb = sbi->raw_super;
++ struct page *cp1, *cp2, *cur_page;
++ unsigned long blk_size = sbi->blocksize;
++ unsigned long long cp1_version = 0, cp2_version = 0;
++ unsigned long long cp_start_blk_no;
++
++ sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
++ if (!sbi->ckpt)
++ return -ENOMEM;
++ /*
++ * Finding out valid cp block involves read both
++ * sets( cp pack1 and cp pack 2)
++ */
++ cp_start_blk_no = le32_to_cpu(fsb->start_segment_checkpoint);
++ cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
++
++ /* The second checkpoint pack should start at the next segment */
++ cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
++ cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
++
++ if (cp1 && cp2) {
++ if (ver_after(cp2_version, cp1_version))
++ cur_page = cp2;
++ else
++ cur_page = cp1;
++ } else if (cp1) {
++ cur_page = cp1;
++ } else if (cp2) {
++ cur_page = cp2;
++ } else {
++ goto fail_no_cp;
++ }
++
++ cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
++ memcpy(sbi->ckpt, cp_block, blk_size);
++
++ f2fs_put_page(cp1, 1);
++ f2fs_put_page(cp2, 1);
++ return 0;
++
++fail_no_cp:
++ kfree(sbi->ckpt);
++ return -EINVAL;
++}
++
++void set_dirty_dir_page(struct inode *inode, struct page *page)
++{
++ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
++ struct list_head *head = &sbi->dir_inode_list;
++ struct dir_inode_entry *new;
++ struct list_head *this;
++
++ if (!S_ISDIR(inode->i_mode))
++ return;
++retry:
++ new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
++ if (!new) {
++ cond_resched();
++ goto retry;
++ }
++ new->inode = inode;
++ INIT_LIST_HEAD(&new->list);
++
++ spin_lock(&sbi->dir_inode_lock);
++ list_for_each(this, head) {
++ struct dir_inode_entry *entry;
++ entry = list_entry(this, struct dir_inode_entry, list);
++ if (entry->inode == inode) {
++ kmem_cache_free(inode_entry_slab, new);
++ goto out;
++ }
++ }
++ list_add_tail(&new->list, head);
++ sbi->n_dirty_dirs++;
++
++ BUG_ON(!S_ISDIR(inode->i_mode));
++out:
++ inc_page_count(sbi, F2FS_DIRTY_DENTS);
++ inode_inc_dirty_dents(inode);
++ SetPagePrivate(page);
++
++ spin_unlock(&sbi->dir_inode_lock);
++}
++
++void remove_dirty_dir_inode(struct inode *inode)
++{
++ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
++ struct list_head *head = &sbi->dir_inode_list;
++ struct list_head *this;
++
++ if (!S_ISDIR(inode->i_mode))
++ return;
++
++ spin_lock(&sbi->dir_inode_lock);
++ if (atomic_read(&F2FS_I(inode)->dirty_dents))
++ goto out;
++
++ list_for_each(this, head) {
++ struct dir_inode_entry *entry;
++ entry = list_entry(this, struct dir_inode_entry, list);
++ if (entry->inode == inode) {
++ list_del(&entry->list);
++ kmem_cache_free(inode_entry_slab, entry);
++ sbi->n_dirty_dirs--;
++ break;
++ }
++ }
++out:
++ spin_unlock(&sbi->dir_inode_lock);
++}
++
++void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
++{
++ struct list_head *head = &sbi->dir_inode_list;
++ struct dir_inode_entry *entry;
++ struct inode *inode;
++retry:
++ spin_lock(&sbi->dir_inode_lock);
++ if (list_empty(head)) {
++ spin_unlock(&sbi->dir_inode_lock);
++ return;
++ }
++ entry = list_entry(head->next, struct dir_inode_entry, list);
++ inode = igrab(entry->inode);
++ spin_unlock(&sbi->dir_inode_lock);
++ if (inode) {
++ filemap_flush(inode->i_mapping);
++ iput(inode);
++ } else {
++ /*
++ * We should submit bio, since it exists several
++ * wribacking dentry pages in the freeing inode.
++ */
++ f2fs_submit_bio(sbi, DATA, true);
++ }
++ goto retry;
++}
++
++/**
++ * Freeze all the FS-operations for checkpoint.
++ */
++void block_operations(struct f2fs_sb_info *sbi)
++{
++ int t;
++ struct writeback_control wbc = {
++ .sync_mode = WB_SYNC_ALL,
++ .nr_to_write = LONG_MAX,
++ .for_reclaim = 0,
++ };
++
++ /* Stop renaming operation */
++ mutex_lock_op(sbi, RENAME);
++ mutex_lock_op(sbi, DENTRY_OPS);
++
++retry_dents:
++ /* write all the dirty dentry pages */
++ sync_dirty_dir_inodes(sbi);
++
++ mutex_lock_op(sbi, DATA_WRITE);
++ if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
++ mutex_unlock_op(sbi, DATA_WRITE);
++ goto retry_dents;
++ }
++
++ /* block all the operations */
++ for (t = DATA_NEW; t <= NODE_TRUNC; t++)
++ mutex_lock_op(sbi, t);
++
++ mutex_lock(&sbi->write_inode);
++
++ /*
++ * POR: we should ensure that there is no dirty node pages
++ * until finishing nat/sit flush.
++ */
++retry:
++ sync_node_pages(sbi, 0, &wbc);
++
++ mutex_lock_op(sbi, NODE_WRITE);
++
++ if (get_pages(sbi, F2FS_DIRTY_NODES)) {
++ mutex_unlock_op(sbi, NODE_WRITE);
++ goto retry;
++ }
++ mutex_unlock(&sbi->write_inode);
++}
++
++static void unblock_operations(struct f2fs_sb_info *sbi)
++{
++ int t;
++ for (t = NODE_WRITE; t >= RENAME; t--)
++ mutex_unlock_op(sbi, t);
++}
++
++static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
++{
++ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
++ nid_t last_nid = 0;
++ int nat_upd_blkoff[3];
++ block_t start_blk;
++ struct page *cp_page;
++ unsigned int data_sum_blocks, orphan_blocks;
++ void *kaddr;
++ __u32 crc32 = 0;
++ int i;
++
++ /* Flush all the NAT/SIT pages */
++ while (get_pages(sbi, F2FS_DIRTY_META))
++ sync_meta_pages(sbi, META, LONG_MAX);
++
++ next_free_nid(sbi, &last_nid);
++
++ /*
++ * modify checkpoint
++ * version number is already updated
++ */
++ ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
++ ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
++ ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
++ for (i = 0; i < 3; i++) {
++ ckpt->cur_node_segno[i] =
++ cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
++ ckpt->cur_node_blkoff[i] =
++ cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
++ nat_upd_blkoff[i] = NM_I(sbi)->nat_upd_blkoff[i];
++ ckpt->nat_upd_blkoff[i] = cpu_to_le16(nat_upd_blkoff[i]);
++ ckpt->alloc_type[i + CURSEG_HOT_NODE] =
++ curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
++ }
++ for (i = 0; i < 3; i++) {
++ ckpt->cur_data_segno[i] =
++ cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
++ ckpt->cur_data_blkoff[i] =
++ cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
++ ckpt->alloc_type[i + CURSEG_HOT_DATA] =
++ curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
++ }
++
++ ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
++ ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
++ ckpt->next_free_nid = cpu_to_le32(last_nid);
++
++ /* 2 cp + n data seg summary + orphan inode blocks */
++ data_sum_blocks = npages_for_summary_flush(sbi);
++ if (data_sum_blocks < 3)
++ ckpt->ckpt_flags |= CP_COMPACT_SUM_FLAG;
++ else
++ ckpt->ckpt_flags &= (~CP_COMPACT_SUM_FLAG);
++
++ orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
++ / F2FS_ORPHANS_PER_BLOCK;
++ ckpt->cp_pack_start_sum = 1 + orphan_blocks;
++ ckpt->cp_pack_total_block_count = 2 + data_sum_blocks + orphan_blocks;
++
++ if (is_umount) {
++ ckpt->ckpt_flags |= CP_UMOUNT_FLAG;
++ ckpt->cp_pack_total_block_count += NR_CURSEG_NODE_TYPE;
++ } else {
++ ckpt->ckpt_flags &= (~CP_UMOUNT_FLAG);
++ }
++
++ if (sbi->n_orphans)
++ ckpt->ckpt_flags |= CP_ORPHAN_PRESENT_FLAG;
++ else
++ ckpt->ckpt_flags &= (~CP_ORPHAN_PRESENT_FLAG);
++
++ /* update SIT/NAT bitmap */
++ get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
++ get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
++
++ crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
++ *(__u32 *)((unsigned char *)ckpt +
++ le32_to_cpu(ckpt->checksum_offset))
++ = cpu_to_le32(crc32);
++
++ start_blk = __start_cp_addr(sbi);
++
++ /* write out checkpoint buffer at block 0 */
++ cp_page = grab_meta_page(sbi, start_blk++);
++ kaddr = page_address(cp_page);
++ memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
++ set_page_dirty(cp_page);
++ f2fs_put_page(cp_page, 1);
++
++ if (sbi->n_orphans) {
++ write_orphan_inodes(sbi, start_blk);
++ start_blk += orphan_blocks;
++ }
++
++ write_data_summaries(sbi, start_blk);
++ start_blk += data_sum_blocks;
++ if (is_umount) {
++ write_node_summaries(sbi, start_blk);
++ start_blk += NR_CURSEG_NODE_TYPE;
++ }
++
++ /* writeout checkpoint block */
++ cp_page = grab_meta_page(sbi, start_blk);
++ kaddr = page_address(cp_page);
++ memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
++ set_page_dirty(cp_page);
++ f2fs_put_page(cp_page, 1);
++
++ /* wait for previous submitted node/meta pages writeback */
++ while (get_pages(sbi, F2FS_WRITEBACK))
++ congestion_wait(BLK_RW_ASYNC, HZ / 50);
++
++ filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
++ filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
++
++ /* update user_block_counts */
++ sbi->last_valid_block_count = sbi->total_valid_block_count;
++ sbi->alloc_valid_block_count = 0;
++
++ /* Here, we only have one bio having CP pack */
++ if (sbi->ckpt->ckpt_flags & CP_ERROR_FLAG)
++ sbi->sb->s_flags |= MS_RDONLY;
++ else
++ sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
++
++ clear_prefree_segments(sbi);
++ F2FS_RESET_SB_DIRT(sbi);
++}
++
++/**
++ * We guarantee that this checkpoint procedure should not fail.
++ */
++void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
++{
++ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
++ unsigned long long ckpt_ver;
++
++ if (!blocked) {
++ mutex_lock(&sbi->cp_mutex);
++ block_operations(sbi);
++ }
++
++ f2fs_submit_bio(sbi, DATA, true);
++ f2fs_submit_bio(sbi, NODE, true);
++ f2fs_submit_bio(sbi, META, true);
++
++ /*
++ * update checkpoint pack index
++ * Increase the version number so that
++ * SIT entries and seg summaries are written at correct place
++ */
++ ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
++ ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
++
++ /* write cached NAT/SIT entries to NAT/SIT area */
++ flush_nat_entries(sbi);
++ flush_sit_entries(sbi);
++
++ reset_victim_segmap(sbi);
++
++ /* unlock all the fs_lock[] in do_checkpoint() */
++ do_checkpoint(sbi, is_umount);
++
++ unblock_operations(sbi);
++ mutex_unlock(&sbi->cp_mutex);
++}
++
++void init_orphan_info(struct f2fs_sb_info *sbi)
++{
++ mutex_init(&sbi->orphan_inode_mutex);
++ INIT_LIST_HEAD(&sbi->orphan_inode_list);
++ sbi->n_orphans = 0;
++}
++
++int create_checkpoint_caches(void)
++{
++ orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
++ sizeof(struct orphan_inode_entry), NULL);
++ if (unlikely(!orphan_entry_slab))
++ return -ENOMEM;
++ inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
++ sizeof(struct dir_inode_entry), NULL);
++ if (unlikely(!inode_entry_slab)) {
++ kmem_cache_destroy(orphan_entry_slab);
++ return -ENOMEM;
++ }
++ return 0;
++}
++
++void destroy_checkpoint_caches(void)
++{
++ kmem_cache_destroy(orphan_entry_slab);
++ kmem_cache_destroy(inode_entry_slab);
++}